Skip to main content
Log in

Transcriptome-based identification of the optimal reference genes as internal controls for quantitative RT-PCR in razor clam (Sinonovacula constricta)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Quantitative real-time PCR (qRT-PCR) is a standard method to measure gene expression in function exploring. Accurate and reproducible data of qRT-PCR requires appropriate reference genes, which are stably expressed under different experimental conditions. However, no housekeeping genes were validated as internal controls for qRT-PCR in Sinonovacula constricta. In this study, we classified the transcriptome data of two tissues for Vibrio infection and Cd2+ stress into ten clusters based on the gene expression patterns. Among them, cluster 5 had the most stable gene expression patterns regardless of tissues and treatments as the database for candidate reference genes. A total of 55 orthologs of classical housekeeping genes in the clam transcriptome were annotated. Combined the expression profiles and housekeeping genes in S. constricta, we chose eight candidate reference genes and validated their expression in Vibrio-infected samples and different tissues by qRT-PCR. Their expression stability was analyzed by three different algorithms geNorm, NormFinder and BestKeeper. Although the rank of the eight candidate reference genes is different in different treatments using different software, RS9 could be the best reference genes for normalization of qRT-PCR expression data in S. constricta under various treatments considering the above analysis. Meanwhile, the ranking of genes based on the CV values of transcriptomic data was similar to the validation results. This study provides for the first time a list of suitable reference genes for S. constricta and a valuable resource for further studies of clam immune defense systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Aychek T, Miller K, Sagi-Assif O, Levy-Nissenbaum O, Israeli-Amit M, Pasmanik-Chor M, Jacob-Hirsch J, Amariglio N, Rechavi G, Witz IP (2008) E-selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release. Int J Cancer 123:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Banni M, Hajer A, Sforzini S, Oliveri C, Boussetta H, Viarengo A (2014) Transcriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comp Biochem Phy C 160:23–29

    CAS  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bathige SDNK., Umasuthan N, Kasthuri SR, Whang I, Lim BS, Nam BH, Lee J (2013) A bifunctional invertebrate-type lysozyme from the disk abalone, Haliotis discus discus: genome organization, transcriptional profiling and biological activities of recombinant protein. Dev Comp Immunol 41:282–294

    Article  PubMed  CAS  Google Scholar 

  • Boujedidi H, Bouchet-Delbos L, Cassard-Doulcier AM, Njiké-Nakseu M, Maitre S, Prévot S, Dagher I, Agostini H, Voican CS, Emilie D (2012) Housekeeping gene variability in the liver of alcoholic patients. Alcohol Clin Exp Res 36:258–266

    Article  PubMed  CAS  Google Scholar 

  • Browne GJ, Proud CG (2002) Regulation of peptide-chain elongation in mammalian cells. FEBS J 269:5360–5368

    CAS  Google Scholar 

  • Bustin S, Benes V, Nolan T, Pfaffl M (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    Article  PubMed  CAS  Google Scholar 

  • Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Passos M, Leitão C, Vasconcelos G, Saraiva M, Figueiredo J, Van den Hurk R, Silva J (2012) Levels of mRNA for bone morphogenetic proteins, their receptors and SMADs in goat ovarian follicles grown in vivo and in vitro. Reprod Fert Develop 24:723–732

    Article  CAS  Google Scholar 

  • Cubero-Leon E, Ciocan CM, Minier C, Rotchell JM (2012) Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure. Environ Sci Pollut R 19:2728–2733

    Article  CAS  Google Scholar 

  • Cui Y, Wei Z, Shen Y, Li C, Shao Y, Zhang W, Zhao X (2018) A novel C1q-domain-containing protein from razor clam Sinonovacula constricta mediates G-bacterial agglutination as a pattern recognition receptor. Dev Comp Immunol 79:166–174

    Article  PubMed  CAS  Google Scholar 

  • Dhar AK, Bowers RM, Licon KS, Veazey G, Read B (2009) Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Mol Immunol 46:1688–1695

    Article  PubMed  CAS  Google Scholar 

  • Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Zhang L, Xu F, Huang B, Zhang G, Li L (2013) Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34:939–945

    Article  PubMed  CAS  Google Scholar 

  • Fernandes JM, Mommens M, Hagen Ø, Babiak I, Solberg C (2008) Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Phy B 150:23–32

    Article  CAS  Google Scholar 

  • Filby AL, Tyler CR (2007) Appropriate’housekeeping’genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    Article  PubMed  CAS  Google Scholar 

  • Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsiao L-L, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P (2001) A compendium of gene expression in normal human tissues. Physiol Genom 7:97–104

    Article  CAS  Google Scholar 

  • Ingerslev H-C, Pettersen EF, Jakobsen RA, Petersen CB, Wergeland HI (2006) Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L.). Mol Immunol 43:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Koramutla MK, Aminedi R, Bhattacharya R (2016) Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). Sci Rep 6:25883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J (2007) Housekeeping and tissue-specific genes in mouse tissues. BMC Genom 8:127

    Article  CAS  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125

    Article  PubMed  CAS  Google Scholar 

  • Lee AS, Kranzusch PJ, Cate JH (2015) eIF3 targets cell proliferation mRNAs for translational activation or repression. Nature 522:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Li H, Su X, Li T (2011) Identification and characterization of a clam ferritin from Sinonovacula constricta. Fish Shellfish Immunol 30:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Pan L, Gong X, Tao Y, Hu Y, Miao J (2014a) Effects of benzo (a) pyrene on differentially expressed genes and haemocyte parameters of the clam Venerupis philippinarum. Ecotoxicology 23:122–132

    Article  PubMed  CAS  Google Scholar 

  • Liu HH, Xiang LX, Shao JZ (2014b) A novel C1q-domain-containing (C1qDC) protein from Mytilus coruscus with the transcriptional analysis against marine pathogens and heavy metals. Dev Comp Immunol 44:70–75

    Article  PubMed  CAS  Google Scholar 

  • Masutani M, Sonenberg N, Yokoyama S, Imataka H (2007) Reconstitution reveals the functional core of mammalian eIF3. EMBO J 26:3373–3383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mateo DR, Greenwood SJ, Araya MT, Berthe FC, Johnson GR, Siah A (2010) Differential gene expression of γ-actin, Toll-like receptor 2 (TLR-2) and interleukin-1 receptor-associated kinase 4 (IRAK-4) in Mya arenaria haemocytes induced by in vivo infections with two Vibrio splendidus strains. Dev Comp Immunol 34:710–714

    Article  PubMed  CAS  Google Scholar 

  • Meistertzheim AL, Tanguy A, Moraga D, Thébault MT (2007) Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 274:6392–6402

    Article  PubMed  CAS  Google Scholar 

  • Morga B, Arzul I, Faury N, Renault T (2010) Identification of genes from flat oyster Ostrea edulis as suitable housekeeping genes for quantitative real time PCR. Fish Shellfish Immunol 29:937–945

    Article  PubMed  CAS  Google Scholar 

  • Niu D, Wang L, Bai Z, Xie S, Zhao H, Li J (2015) Identification and expression characterization of the myostatin (MSTN) gene and association analysis with growth traits in the razor clam Sinonovacula constricta. Gene 555:297–304

    Article  PubMed  CAS  Google Scholar 

  • Niu D, Du Y, Wang Z, Xie S, Nguyen H, Dong Z, Shen H, Li J (2017) Construction of the First high-density genetic linkage map and analysis of quantitative trait loci for growth-related traits in Sinonovacula constricta. Mar Biotechnol 19:1–9

    Article  CAS  Google Scholar 

  • Peng C, Zhao X, Liu S, Shi W, Han Y, Guo C, Peng X, Chai X, Liu G (2017) Ocean acidification alters the burrowing behaviour, Ca2+/Mg2+-ATPase activity, metabolism, and gene expression of a bivalve species, Sinonovacula constricta. Mar Ecol Prog Ser 575:107–117

    Article  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Ran Z, Chen H, Ran Y, Yu S, Li S, Xu J, Liao K, Yu X, Zhong Y, Ye M (2017) Fatty acid and sterol changes in razor clam Sinonovacula constricta (Lamarck 1818) reared at different salinities. Aquaculture 473:493–500

    Article  CAS  Google Scholar 

  • Ren Q, Qi YL, Hui KM, Zhang Z, Zhang CY, Wang W (2012) Four invertebrate-type lysozyme genes from triangle-shell pearl mussel (Hyriopsis cumingii). Fish Shellfish Immunol 33:909–915

    Article  PubMed  CAS  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912

    Article  PubMed  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  Google Scholar 

  • Selvey S, Thompson EW, Matthaei K, Lea RA, Irving M, Griffiths LR (2001) β-Actin—an unsuitable internal control for RT-PCR. Mol Cell Probes 15:307–311

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Liu M, Shi J, Zheng G, Wang Y, Wang J, Chen Y, Lu C, Yin W (2012) Reference gene selection for qPCR in Ammopiptanthus mongolicus under abiotic stresses and expression analysis of seven ROS-scavenging enzyme genes. Plant Cell Rep 31:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Song H, Dang X, He Y-q, Zhang T, Wang H-y (2017) Selection of housekeeping genes as internal controls for quantitative RT-PCR analysis of the veined rapa whelk (Rapana venosa). PeerJ 5:e3398

    Article  PubMed  PubMed Central  Google Scholar 

  • Stürzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Phy B 130:281–289

    Article  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  PubMed  CAS  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol R 68:403–431

    Article  CAS  Google Scholar 

  • Thorrez L, Van Deun K, Tranchevent L-C, Van Lommel L, Engelen K, Marchal K, Moreau Y, Van Mechelen I, Schuit F (2008) Using ribosomal protein genes as reference: a tale of caution. PLoS One 3:e1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valenzuela-Castillo A, Mendoza-Cano F, Enríquez-Espinosa T, Grijalva-Chon JM, Sánchez-Paz A (2017) Selection and validation of candidate reference genes for quantitative real-time PCR studies in the shrimp Penaeus vannamei under viral infection. Mol Cell Probes 33:42–50

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1

    Article  Google Scholar 

  • Volland M, Blasco J, Hampel M (2017) Validation of reference genes for RT-qPCR in marine bivalve ecotoxicology: systematic review and case study using copper treated primary Ruditapes philippinarum hemocytes. Aquatic Toxicol 185:86–94

    Article  CAS  Google Scholar 

  • Wang Z, Shao Y, Li C, Zhang W, Duan X, Zhao X, Qiu Q, Jin C (2016) RNA-seq analysis revealed ROS-mediated related genes involved in cadmium detoxification in the razor clam Sinonovacula constricta. Fish Shellfish Immunol 57:350–361

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, He X, Yu Z (2011) Two homologues of inhibitor of NF-kappa B (IκB) are involved in the immune defense of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 30:1354–1361

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen D, Smith MA, Zhang B, Pan X (2012) Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS One 7:e31849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Duan X, Wang Z, Zhang W, Li Y, Jin C, Xiong J, Li C (2017) Comparative transcriptome analysis of Sinonovacula constricta in gills and hepatopancreas in response to Vibrio parahaemolyticus infection. Fish Shellfish Immunol 67:523–535

    Article  PubMed  CAS  Google Scholar 

  • Zheng W-j, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol 30:638–645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhejiang Major Program of Science and Technology (2016C02055-9, 2015C32004), Natural Science Foundation of Ningbo (2015C10009, 2015C10062), Start Research Fund projects for Xuelin Zhao, Ningbo University Fund (XYL17010) and the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Li.

Ethics declarations

Conflict of interest

Xuelin Zhao declares that she does not have conflict of interest. Jianping Fu declares that he does not have conflict of interest. Liting Jiang declares that she does not have conflict of interest. Weiwei Zhang declares that she does not have conflict of interest. Yina Shao declares that hshe does not have conflict of interest. Chunhua Jin declares that he does not have conflict of interest. Jinbo Xiong declares that he does not have conflict of interest. Chenghua Li declares that he does not have conflict of interest.

Ethical approval

S. constricta is a commercially cultured animals, and all the experiments were conducted in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The study protocol was approved by the Experimental Animal Ethics Committee of Ningbo University, China.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Melting curves for the eight candidate reference genes. (TIF 2487 KB)

Supplementary Table S1

Details of orthologues of clam Sinonovacula constricta blasting with housekeeping genes in Crassostrea gigas. (XLSX 11 KB)

Supplementary Table S2

Expression values (CT) of candidate reference genes in vibrio-infected samples. (XLSX 10 KB)

Supplementary Table S3

Expression values (CT) of candidate reference genes in five tissues. (XLSX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Fu, J., Jiang, L. et al. Transcriptome-based identification of the optimal reference genes as internal controls for quantitative RT-PCR in razor clam (Sinonovacula constricta). Genes Genom 40, 603–613 (2018). https://doi.org/10.1007/s13258-018-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0661-9

Keyword

Navigation