Skip to main content
Log in

Transcriptome analysis of Dioscorea zingiberensis identifies genes involved in diosgenin biosynthesis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Dioscorea zingiberensis is the main plant source of diosgenin, a precursor for the production of steroid hormones used in the pharmaceutical industry. The extraction process of diosgenin from D. zingiberensis can generate high-acid and high-strength wastewater on a large scale and can threaten the environment. Bioengineering microorganisms to produce diosgenin is an effective way to avoid pollution. However, little is known about the genes that are involved in the biosynthesis of diosgenin. We obtained 85,010 unigenes (average length of 1142 bases) from the D. zingiberensis transcriptome through RNA-seq. A large number of unigenes (59,368; 69.83%) were annotated, and 2488 unigenes were assigned to 27 secondary-metabolite pathways. In our database, 66 unigenes encoding up to 40 key enzymes were found to be present in diosgenin biosynthesis pathways. In addition, we found 203 unigenes encoding CYP450 proteins and 47 unigenes encoding UGT proteins that may be involved in modifications of a downstream pathway. The expression patterns of key diosgenin biosynthesis genes were studied to identify the most important members of the enzyme family. These results add to the available genetic data of D. zingiberensis and lay the foundation for the further production of diosgenin using genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AS:

Amyrin synthase

CAS:

Cycloartenol synthase

IPP:

Isopentenyl pyrophosphate

EC:

Enzyme commission

FPS:

Farnesyl pyrophasphate synthase

GO:

Gene ontology

HMGR:

3-hydroxy-3-methylglutaryl CoA reductase

IDI:

Isopentenyl diphosphate isomerase

LS:

Lanosterol synthase

SQS:

Squalene synthase

OSC:

Oxidosqualene cyclase

TF:

Transcription factor

UGT:

Uridine diphosphate (UDP)-dependent glycosyltransferase

References

  • Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75:1453–1458

    Article  CAS  PubMed  Google Scholar 

  • Bennett RD, Heftmann E, Joly RA (1970) Biosynthesis of diosgenin from 26-hydroxycholesterol in Dioscorea floribunda. Phytochemistry 9:349–353

    Article  CAS  Google Scholar 

  • Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94:1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Chappell J (2002) The genetics and molecular genetics of terpene and sterol origami. Curr Opin Plant Biol 5:151–157

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Zhao H, Zhao B, Ni J (2009) Pilot treatment of wastewater from Dioscorea zingiberensis C.H. Wright production by anaerobic digestion combined with a biological aerated filter. Bioresource Technol 100:2918–2925

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Coon M (2005) Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol 45:1

    Article  CAS  Google Scholar 

  • Diarra ST, He J, Wang J, Li J (2013) Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensis via up-regulation of CAS and HMGR gene expression. Electron J. Biotechnol 16:6–6

    Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Gong G, Qin Y, Huang W (2011) Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo. Phytomedicine 18:458–463

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang YY, Huang CH, Mu s, Xu Ls (2004) Studies on diversity of morphological characteristics of leaves from Dioscorea zingiberensis. Acta botanica Yunnanica 26:398–404

    Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • He M, Wang Y, Hua WP, Zhang Y, Wang ZZ (2012a) De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PloS ONE 7:e42081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Tian Y, Zhang X, Bing B, Zhang L, Wang H, Zhao W (2012b) Anti-tumour and immunomodulating activities of diosgenin, a naturally occurring steroidal saponin. Nat Prod Res 26:2243–2246

    Article  CAS  PubMed  Google Scholar 

  • Hua WP, Zhang Y, Song J, Zhao LJ, Wang ZZ (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279

    Article  CAS  Google Scholar 

  • Huang CH, Hang YY, Zhou YF, Guo KY (2003) Analysis on quality of some main population of Dioscorea Zingiberensis in China. Chem Ind Forest Prod 23:68–72

    CAS  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Joly RA, Bonner J, Bennett RD, Heftmann E (1969) The biosynthesis of steroidal sapogenins in Dioscorea floribunda from doubly labelled cholesterol. Phytochemistry 8:1709–1711

    Article  CAS  Google Scholar 

  • Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim OT, Kim SH, Ohyama K, Muranaka T, Choi YE, Lee HY, Kim MY, Hwang B (2010) Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep 29:403–411

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Kim JK, Kim YB, Lee S, Kim SU, Park SU (2013) Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Agric Food Chem 61:1928–1934

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Koolman J, Röhm K-H (2005) Color atlas of biochemistry. 3th edn. George Thieme Verlag, Thieme New York

    Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Antolin-Llovera M, Ferrero S, Closa M, Arro M, Ferrer A, Boronat A, Campos N (2011) Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2 A. Plant cell 23:1494–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Dong Ys, Xiu Zl (2010) Three-liquid-phase extraction of diosgenin and steroidal saponins from fermentation of Dioscorea zingibernsis C. H. Wright. Process Biochem 45:752–756

    Article  CAS  Google Scholar 

  • Mehrafarin A, Ghaderi A, Rezazadeh S, Naghdi BH, Nourmohammadi G, Zand E (2010) Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J Med Plants 9:1–1

    CAS  Google Scholar 

  • Morlacchi P, Wilson WK, Xiong Q, Bhaduri A, Sttivend D, Kolesnikova MD, Matsuda SP (2009) Product profile of PEN3: the last unexamined oxidosqualene cyclase in Arabidopsis thaliana. Org Lett 11:2627–2630

    Article  CAS  PubMed  Google Scholar 

  • Neelakandan AK, Chamala S, Valliyodan B, Nes WD, Nguyen HT (2012) Metabolic engineering of soybean affords improved phytosterol seed traits. Plant Biotechnol 10:12–19

    Article  CAS  Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama K, Suzuki M, Masuda K, Yoshida S, Muranaka T (2007) Chemical phenotypes of the hmg1 and hmg2 mutants of Arabidopsis demonstrate the in-planta role of HMG-CoA reductase in triterpene biosynthesis. Chem Pharm Bull (Tokyo) 55:1518–1521

    Article  CAS  Google Scholar 

  • Ohyama K, Suzuki M, Kikuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. PNAS 106:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140:818–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips DR, Rasbery JM, Bartel B, Matsuda SPT (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314

    Article  CAS  PubMed  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:1–8

    Article  Google Scholar 

  • Sh R (2010) Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J Med Plant 9:1–18

    Google Scholar 

  • Stohs SJ, Kaul B, Staba EJ (1969) The metabolism of 14C-cholesterol by Dioscorea deltoidea suspension cultures. Phytochemistry 8:1679–1686

    Article  CAS  Google Scholar 

  • Stohs SJ, Sabatka JJ, Rosenberg H (1974) Incorporation of 4-14C-22,23–3 H-sitosterol Into diosgenin by Dioscorea deltoidea tissue suspension cultures. Phytochemistry 13:2145–2148

    Article  CAS  Google Scholar 

  • Suzuki M, Muranaka T (2007) Molecular genetics of plant sterol backbone synthesis. Lipids 42:47–54

    Article  CAS  PubMed  Google Scholar 

  • Tal B, Tamir I, Rokem J, Goldberg I (1984) Isolation and characterization of an intermediate steroid metabolite in diosgenin biosynthesis in suspension cultures of Dioscorea deltoidea cells. Biochem J 219:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya K, Ghosh A, Kumar V, Chaudhary S, Srivastava N, Katudia K, Tiwari T, Chikara SK (2013) De Novo transcriptome sequencing in Trigonella foenum L. to identify genes involved in the biosynthesis of diosgenin. Plant Genome 6

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hua WP, Wang J, Hannoufa A, Xu Z, Wang ZZ (2013) Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Mol Genet Genom 288:131–139

    Article  CAS  Google Scholar 

  • Wei M, Bai Y, Ao M, Jin W, Yu P, Zhu M, Yu L (2013) Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW). Bioresource Technol 146:549–555

    Article  CAS  Google Scholar 

  • Xu DP, Hu CY, Wang L, Wang XC, Pang ZJ (2009) Isolation and structure determination of steroidal saponin from Dioscorea zingiberensis. Acta Pharmaceutica Sinica 44:56–59

    CAS  PubMed  Google Scholar 

  • Xue Z, Duan L, Liu D, Guo J, Ge S, Dicks J, ÓMáille P, Osbourn A, Qi X (2012) Divergent evolution of oxidosqualene cyclases in plants. New Phytol 193:1022–1038

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Wang R, Jin L, Shen J, Li X, Yang T, Zhou M, Yang Z, Chen Y (2014) Molecular cloning and differential expression analysis of a squalene synthase gene from Dioscorea zingiberensis, an important pharmaceutical. Plant Mol Biol Rep 41:6097–6104

    Article  CAS  Google Scholar 

  • Zhang R, Li P, Xu L, Chen Y, Sui P, Zhou L, Li J (2009) Enhancement of diosgenin production in Dioscorea zingiberensis cell culture by oligosaccharide elicitor from its endophytic fungus Fusarium oxysporum Dzf17. Nat Prod Commun 4:1459

    CAS  PubMed  Google Scholar 

  • Zhang X, Liang J, Liu J, Zhao Y, Gao J, Sun W, Ito Y (2014) Quality control and identification of steroid saponins from Dioscorea zingiberensis CH Wright by fingerprint with HPLC-ELSD and HPLC-ESI-Quadrupole/Time-of-fight tandem mass spectrometry. J Pharmaceut Biomed 91:46–59

    Article  CAS  Google Scholar 

  • Zhou JS, Ji SL, Ren MF, He YL, Jing XR, Xu JW (2014) Enhanced accumulation of individual ganoderic acids in a submerged culture of Ganoderma lucidum by the overexpression of squalene synthase gene. Biochem Eng J 90:178–183

    Article  CAS  Google Scholar 

  • Zhu Y, Huang W, Ni J (2010) A promising clean process for production of diosgenin from Dioscorea zingiberensis C. H. Wright. J Clean Prod 18:242–247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work benefited from financial support from the National Natural Science Foundation of China (Grant No. 31270338, 31300256), The Science and Technology Cooperation Project between Shaanxi Province and Qinghai Province (2014SJ-07), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015NY041), the National College Students Innovation and Entrepreneurship Training program (201514390767) and the Fundamental Research Funds for the Central Universities (GK201304004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangmin Li or Zhezhi Wang.

Ethics declarations

Conflict of interest

Wenping Hua declares that he has no conflict of interest. Weiwei Kong declares that she has no conflict of interest. XiaoYan Cao declares that she has no conflict of interest. Chen chen declares that she has no conflict of interest. Qian Liu declares that she has no conflict of interest. Xiangmin Li declares that he has no conflict of interest.Zhezhi Wang declares that he has no conflict of interest.

Human and animal participants

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Hua Wenping and Kong Weiwei have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, W., Kong, W., Cao, X. et al. Transcriptome analysis of Dioscorea zingiberensis identifies genes involved in diosgenin biosynthesis. Genes Genom 39, 509–520 (2017). https://doi.org/10.1007/s13258-017-0516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0516-9

Keywords

Navigation