Skip to main content
Log in

Effect of ionizing radiation on the DNA damage response in Chlamydomonas reinhardtii

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The DNA damage response (DDR) is induced by various DNA damaging factors and maintains genome stability in all organisms. The Chlamydomonas reinhardtii genome contains putative homologous genes involved in DDR; however, little is known about the functions and responses of these genes to DNA damage. In this study, DDR by gamma radiation was determined in C. reinhardtii. Irradiation with 80, and 200 Gy gamma radiation caused death in approximately 47 and 97 % of C. reinhardtii cells, respectively. The absolute lethality of cells was at 300 Gy. The rate of DNA breaks was also determined using comet assays after exposure to different doses of gamma radiation. Irradiation with 80 and 400 Gy resulted in 17 and 34 % of nuclear degradation in C. reinhardtii cells, respectively. To identify the major DDR pathway of C. reinhardtii induced by gamma radiation, 24 putative DDR genes were selected from the Joint Genome Institute (JGI) database. Gamma radiation significantly affected expression of 15 genes among these. Therefore, these genes displaying expressional changes by gamma radiation are involved in DDR, which indicate that C. reinhardtii may possess a fundamental conserved DDR pathway with higher plants. Furthermore, radiation responsive proteins were identified by proteomic analysis, which are involved in metabolisms of carbohydrate, energy, and photosynthesis. This is the first report to describe the responses of DDR homologous genes to gamma radiation and to identify gamma radiation-responsive proteins in C. reinhardtii. Our data should provide molecular insights into gamma radiation responses including DNA damage in green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal R, Rane SS, Sainis JK (2008) Effects of 60Co gamma radiation on thylakoid membrane functions in Anacystis nidulans. J Photochem Photobiol B 91:9–19

    Article  CAS  PubMed  Google Scholar 

  • Akutsu N, Iijima K, Hinata T, Tauchi H (2007) Characterization of the plant homolog of Nijmegen breakage syndrome 1: involvement in DNA repair and recombination. Biochem Biophys Res Commun 353:394–398

    Article  CAS  PubMed  Google Scholar 

  • Amiard S, Charbonnel C, Allain E, Depeiges A, White CI, Gallego ME (2010) Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis. Plant Cell 22:3020–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahk YY, Kim SA, Kim JS, Euh HJ, Bai GH, Cho SN, Kim YS (2004) Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4:3299–3307

    Article  CAS  PubMed  Google Scholar 

  • Barea F, Bonatto D (2008) Relationships among carbohydrate intermediate metabolites and DNA damage and repair in yeast from a systems biology perspective. Mutat Res 642:43–56

    Article  CAS  PubMed  Google Scholar 

  • Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A (2003) Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci USA 100:1633–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt K, Sarma A, Thaker V (2008) Effect of 7Li radiation on endogenous hormonal level on developing cotton fiber. Indian J Exp Biol 46:673–676

    PubMed  Google Scholar 

  • Cenkci B, Petersen JL, Small GD (2003) REX1, a novel gene required for DNA repair. J Biol Chem 278:22574–22577

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhao S, Wu Z, Dai P, Zhou B (2012) Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast. Mol Biol Cell 23:4373–4382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira E, Gimenez R, Canas MA, Aguilera L, Aguilar J, Badia J, Baldoma L (2015) Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli. Int J Biochem Cell Biol 60:202–212

    Article  CAS  PubMed  Google Scholar 

  • Gallego ME, White CI (2001) RAD50 function is essential for telomere maintenance in Arabidopsis. Proc Natl Acad Sci USA 98:1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobom J, Nordho E, Mirgorodskaya Ekmanb R, Roepstor P (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116

    Article  CAS  PubMed  Google Scholar 

  • Griffith JD, Lindsey-Boltz LA, Sancar A (2002) Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J Biol Chem 277:15233–15236

    Article  CAS  PubMed  Google Scholar 

  • Gutman BL, Niyogi KK (2004) Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol 135:607–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD (2003) Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot Cell 2:362–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Cerutti H (2009) Targeted gene silencing by RNA interference in Chlamydomonas. Methods Cell Biol 93:99–110

    Article  CAS  PubMed  Google Scholar 

  • Kitanovic A, Wolfl S (2006) Fructose 1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae. Mutat Res 594:135–147

  • Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C, Pan ZQ (1997) p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol 17:7220–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Lario LD, Ramirez-Parra E, Gutierrez C, Casati P, Spampinato CP (2011) Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response. J Exp Bot 62:2925–2937

    Article  CAS  PubMed  Google Scholar 

  • Mannuss A, Trapp O, Puchta H (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819:154–165

    Article  CAS  PubMed  Google Scholar 

  • Marin-Navarro J, Moreno J (2003) Modification of the proteolytic fragmentation pattern upon oxidation of cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase. Biochemistry 42:14930–14938

    Article  CAS  PubMed  Google Scholar 

  • Nishimura G, Proske RJ, Doyama H, Higuchi M (2001) Regulation of apoptosis by respiration: cytochrome c release by respiratory substrates. FEBS Lett 505:399–404

    Article  CAS  PubMed  Google Scholar 

  • Plecenikova A, Slaninova M, Riha K (2014) Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis. PLoS ONE 9:e105482

    Article  PubMed  PubMed Central  Google Scholar 

  • Popanda O, Fox G, Thielmann HW (1998) Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta 1397:102–117

    Article  CAS  PubMed  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasanuma H, Tawaramoto MS, Lao JP, Hosaka H, Sanda E, Suzuki M, Yamashita E, Hunter N, Shinohara M, Nakagawa A, Shinohara A (2013) A new protein complex promoting the assembly of Rad51 filaments. Nat Commun 4:1676

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131:401–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice. BMC Genom 11:443

    Article  Google Scholar 

  • Singh B, Ahyja S, Singhal RK, Venu Babu P (2013) Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. J Radioanal Nucl Chem 298:249–257

    Article  CAS  Google Scholar 

  • Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750

    Article  CAS  PubMed  Google Scholar 

  • Takashi Y, Kobayashi Y, Tanaka K, Tamura K (2009) Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol 50:1965–1976

    Article  CAS  PubMed  Google Scholar 

  • Thacker J (1999) A surfeit of RAD51-like genes? Trends Genet 15:166–168

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751:158–246

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  PubMed  Google Scholar 

  • Vlcek D, Slivkova A, Podstavkova S, Miadokova E (1997) A Chlamydomonas reinhardtii UV-sensitive mutant uvs15 is impaired in a gene involved in several repair pathways. Mutat Res 385:243–249

    Article  CAS  PubMed  Google Scholar 

  • Vlcek D, Sevcovicova A, Sviezena B, Galova E, Miadokova E (2008) Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Genet 53:1–22

    Article  CAS  PubMed  Google Scholar 

  • von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H, Wanner G, Efferth T, Trauner D, Vollmar AM (2013) Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition. J Biol Chem 288:1385–1396

    Article  Google Scholar 

  • Waterworth WM, Drury GE, Bray CM, West CE (2011) Repairing breaks in the plant genome: the importance of keeping it together. New Phytol 192:805–822

    Article  CAS  PubMed  Google Scholar 

  • Wen-Li Z, Jian W, Yan-Fang T, Xing F, Yan-Hong L, Xue-Ming Z, Min Z, Jian N, Jian P (2012) Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res: CR 31:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  PubMed  Google Scholar 

  • Yordanova ZP, Woltering EJ, Kapchina-Toteva VM, Iakimova ET (2013) Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii. Ann Bot 111:191–205

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama KO, Sakaguchi K, Kimura S (2013) DNA damage response in plants: conserved and variable response compared to animals. Biology (Basel) 2:1338–1356

    Google Scholar 

  • Yu J, Guo QL, You QD, Zhao L, Gu HY, Yang Y, Zhang HW, Tan Z, Wang X (2007) Gambogic acid-induced G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation of CDC2/p34 in human gastric carcinoma BGC-823 cells. Carcinogenesis 28:632–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Wang W, Bai X, Qi Y (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58:157–164

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research program of KAERI, Republic of Korea and basic science program through the national research foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2055300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoon-E Choi or Joon-Woo Ahn.

Ethics declarations

Conflict of interest

Koo KM, Jung S, Kim JB, Kim SH, Kwon SJ, Jeong WJ, Chung GH, Kang SY, Choi YE, and Ahn JW declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, K.M., Jung, S., Kim, JB. et al. Effect of ionizing radiation on the DNA damage response in Chlamydomonas reinhardtii . Genes Genom 39, 63–75 (2017). https://doi.org/10.1007/s13258-016-0472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0472-9

Keywords

Navigation