Skip to main content
Log in

Assessment of high-resolution melting (HRM) profiles as predictors of microsatellite variation: an example in Providence Petrel (Pterodroma solandri)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

High-resolution melting (HRM) analysis is an emerging technology to screen microsatellites for polymorphism. A potential issue surrounding this method is that amplicon sizes for HRM should typically be short (80–100 bp) for highest sensitivity to reveal polymorphism via the presence of two peaks in the curve of the derivative of fluorescence over temperature (dF/dT). In contrast, microsatellite amplicons are typically 100–400 bp. Therefore, we compared HRM analysis melting temperature range (ΔTm) and multiple dF/dT peaks for predicting microsatellite polymorphism. We assessed polymorphism at 27 microsatellite loci, with estimated lengths of 122–321 bp, in Providence Petrel (Pterodroma solandri). We validated HRM assessment using traditional capillary electrophoresis (CE). While 100 % of loci exhibiting multiple peaks in the dF/dT curve were confirmed as polymorphic by CE, 16 % improvement in sensitivity (83 vs. 67 %) was achieved by using ΔTm, and 25 % (92 vs. 67 %) by using ΔTm in addition to multiple dF/dT peaks. We suggest HRM melting temperature range as new predictor of polymorphism that can be used to rapidly assess microsatellites polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen P, Jespersgaard C, Vuust J, Christiansen M, Larsen L (2003) Capillary electrophoresis-based single strand DNA conformation analysis in high-throughput mutation screening. Hum Mutat 21:455–465

    Article  CAS  PubMed  Google Scholar 

  • Arthofer W, Steiner F, Schlick-Steiner B (2011) Rapid and cost effective screening of newly identified microsatellite loci by high-resolution melting analysis. Mol Genet Genomics 286:225–235

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Agis G, Imhof M, Schlotterer C (2000) Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol Biol Evol 17:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown RM, Jordan WC (2009) Characterization of polymorphic microsatellite loci from Round Island petrels (Pterodroma arminjoniana) and their utility in other seabird species. J Ornithol 150:925–929

    Article  Google Scholar 

  • Burg TM (1999) Isolation and characterization of microsatellites in albatrosses. Mol Ecol 8:338–341

    CAS  PubMed  Google Scholar 

  • Crawford A, Kappes S, Paterson K, deGotari M, Dodds K, Freking B, Stone R, Beattie C (1998) Microsatellite evolution: testing the ascertainment biais hypothesis. J Mol Evol 46:256–260

    Article  CAS  PubMed  Google Scholar 

  • Distefano G, Caruso M, La Malfa S, Gentile A, Wu SB (2012) High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR—an example in Citrus. PLoS ONE 7:e4402

    Article  Google Scholar 

  • Dubois MP, Jarne P, Jouventin P (2005) Ten polymorphic microsatellite markers in the wandering albatross Diomedea exulans. Mol Ecol Notes 5:905–907

    Article  CAS  Google Scholar 

  • Gardner M, Fitch A, Bertozzi T, Lowe A (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11:1093–1101

    Article  PubMed  Google Scholar 

  • Given AD, Mills JA, Baker AJ (2002) Isolation of polymorphic microsatellite loci from the red-billed gull (Larus novaehollandiae scopulinus) and amplification in related species. Mol Ecol Notes 4:416–418

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  CAS  PubMed  Google Scholar 

  • Gundry C, Vandersteen J, Reed G, Pryor R, Chen J, Wittwer C (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406

    Article  CAS  PubMed  Google Scholar 

  • Gundry CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, Coyne T, Wall MD, Wittwer CT, Teng DHF (2008) Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Resour 36:3401–3408

    Article  CAS  Google Scholar 

  • Herrmann M, Durtschi J, Bromley L, Wittwer C, Voelkerding K (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 53:494–503

    Article  Google Scholar 

  • Hughes C, Queller D (1993) Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol Ecol 2:131–137

    Article  CAS  PubMed  Google Scholar 

  • IUCN (2011) IUCN Red list of threatened species. IUCN

  • Kupper C, Horsburgh GJ, Dawson DA, Ffrench-Constant R, Szekely T, Burke T (2007) Characterization of 36 polymorphic microsatellite loci in the Kentish plover (Charadrius alexandrinus) including two sex-linked loci and their amplification in four other Charadrius species. Mol Ecol Notes 7:35–39

    Article  CAS  Google Scholar 

  • Lessa E, Applebaum G (1993) Screening techniques for detecting allelic variation in DNA sequences. Mol Ecol 2:119–129

    Article  CAS  PubMed  Google Scholar 

  • Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri M, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52:252–260

    Article  CAS  PubMed  Google Scholar 

  • Reed G, Wittwer C (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–236

    Article  CAS  PubMed  Google Scholar 

  • Seipp M, Durtschi J, Liew M, Williams J, Damjanovich K, Pont-Kingdon G, Lyon E, Voelkerding KV, Wittwer CT (2007) Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting. J Mol Diagn 9:284–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith BL, Lu CP, Bremer JRA (2010) High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. Mol Ecol Resour 10:193–196

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Gomez-Diaz E, Bailie A, Friesen V (2009) Isolation and characterization of microsatellite loci for storm-petrels. Mol Ecol Resour 9:913–915

    Article  CAS  PubMed  Google Scholar 

  • Techow NMSM, O’ryan C (2004) Characterization of microsatellite loci in White-chinned petrel (Procellaria aequinoctialis) and cross-amplification in six other procellariiform species. Mol Ecol Notes 4:33–35

    Article  CAS  Google Scholar 

  • Tindall E, Peterson D, Woodbridge P, Schinapy K, Hayes V (2009) Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments. Hum Mutat 30:876–883

    Article  CAS  PubMed  Google Scholar 

  • Welch AJ, Fleischer RC (2011) Polymorphic microsatellite markers for the endangered Hawaiian petrel (Pterodroma sandwichensis). Conserv Genet Resour 3:581–584

    Article  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Kelleher C, Howard-William E, Meade C (2012) Rapid identification of chloroplast haplotypes using high resolution melting analysis. Mol Ecol Resour 12:894–908

    Article  Google Scholar 

Download references

Acknowledgements

The Seaworld Research and Rescue Foundation Inc (Grant SWR/4/2011) supported this work.

Author contributions

Anicee Lombal and Theodore Wenner constructed the manuscript and collected the molecular data. Anicee Lombal performed statistical analyses. Christopher Burridge designed the study and contributed to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anicee J. Lombal.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombal, A.J., Wenner, T.J. & Burridge, C.P. Assessment of high-resolution melting (HRM) profiles as predictors of microsatellite variation: an example in Providence Petrel (Pterodroma solandri). Genes Genom 37, 977–983 (2015). https://doi.org/10.1007/s13258-015-0327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0327-9

Keywords

Navigation