Skip to main content
Log in

Genome-wide identification of the class III aminotransferase gene family in rice and expression analysis under abiotic stress

ATIII gene family in japonica and indica rice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Aminotransferases are pyridoxal 5′-phosphate-dependent enzymes that play crucial roles in plant growth, development, and responses to abiotic stress. The class III aminotransferase family (ATIII family) is an important subfamily. However, no characterization of rice ATIII genes has been previously reported. Using available rice genome sequence information, we identified 12 japonica and 13 indica ATIII genes that were randomly localized on chromosomes 2, 3, 4, 5, 7, 8, and 11. Information provided by the Plant Genome Duplication Database revealed that four japonica and four indica ATIII genes are the results of segmental duplications, and two japonica and six indica genes resulted from tandem duplications. A phylogenetic analysis of the ATIII genes in japonica, indica and Arabidopsis enabled the classification of the genes into six different groups, and the characteristics were established before the monocot-dicot and japonicaindica split. An analysis of the Ka/Ks, divergence time and average indel length suggested the diverse selection styles of the duplicated gene pairs. Gene structure and motif analyses revealed that the ATIII gene family has experienced extensive divergence. Real-time PCR was performed to examine the expression pattern of the japonica ATIII genes in response to various abiotic stresses including drought, salt, and cold. The results suggested that most of the genes were differentially up- or down-regulated in rice seedlings in response to at least one stress factor, which indicates the key role of the rice ATIII gene family in responding to abiotic stresses. These results provide a basis for elucidating the roles of the ATIII genes and their further functional analysis under abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Chauve C, Doyon JP, Mabrouk NE (2008) Gene family evolution by duplication, speciation, and loss. J Comput Biol 15:1043–1062

    Article  PubMed  CAS  Google Scholar 

  • Chen JJ, Ouyang YD, Wang L, Xie WB, Zhang QF (2009) Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and phylogenetic relation. Gene 442:108–118

    Article  PubMed  CAS  Google Scholar 

  • Christen P, Mehta PK (2001) From cofactor to enzymes. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Chem Rec 1:436–447

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Hereditas (Beijing) 29:1023–1026

    Article  CAS  Google Scholar 

  • Guo B, Zou M, Wagner A (2012) Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication. Mol Biol Evol 29:3005–3022

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Hindemitt T, Meyers B, Mayer KFX (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  PubMed  CAS  Google Scholar 

  • Haefele SM, Bouman BAM (2009) Drought-prone rainfed lowland rice in Asia: limitations and management options. In: Serraj J, Bennet J, Hardy B (eds) Drought Frontiers in Rice: Crop Improvement for Increased Rainfed Production. International Rice Research Institute (IRRI), Philippines, pp 211–232

    Chapter  Google Scholar 

  • Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2:900–904

    Article  CAS  Google Scholar 

  • Hwang BY, Cho BK, Yun H, Koteshwar K, Kim BG (2005) Revisit of aminotransferase in the genomic era and its application to biocatalysis. J Mol Catal B-Enzym 37:47–55

    Article  CAS  Google Scholar 

  • Ilag LL, Kumar AM, Soll D (1994) Light regulation of chlorophyll, biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275

    PubMed  CAS  Google Scholar 

  • Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struc Biol 8:759–769

    Article  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Olsen LJ (2004) Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci 23:73–89

    Article  CAS  Google Scholar 

  • Liu T, Zeng JQ, Xia KF, Fan T, Li YG, Wang YQ, Xu XL, Zhang MY (2012) Evolutionary expansion and functional diversification of oligopeptide transporter gene family in rice. Rice 5:1–14

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Xiao JH, Li XH, Zhang QF, Lian XM (2009) Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 444:33–45

    Article  PubMed  CAS  Google Scholar 

  • Mehta PK, Hale TI, Christen P (1989) Evolutionary relationships among aminotransferases. Eur J Bioehem 186:249–253

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Shammari TA, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Bioph Res Co 423:417–423

    Article  CAS  Google Scholar 

  • Ohno (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Percudani R, Peracchi A (2003) A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep 4:850–854

    Article  PubMed  CAS  Google Scholar 

  • Roosens NHCJ, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Schonhuth A, Salari R, Hormozdiari F, Cherkasov A, Sahinalp SC (2010) Towards improved assessment of functional similarity in large-scale screens: a study on indel length. J Comput Biol 17:1–20

    Article  PubMed  CAS  Google Scholar 

  • Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, Dongen JT, Kopka J (2011) Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci 182:101–111

    Article  PubMed  Google Scholar 

  • Song YL, Wang L, Xiong LH (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591

    Article  PubMed  CAS  Google Scholar 

  • Stewart JD (2001) Dehydrogenases and transaminases in asymmetric synthesis. Curr Opin Chem Biol 5:120–129

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Yang Z, Wolfner MF, Aquadro CF (2001) Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci USA 98:2509–2514

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Timothy LB, Mikael B, Fabian AB, Martin F, Charles EG, Luca C, Jingyuan R, Wilfred WL, William SN (2009) MEME SUITE: tools for motif discovery and searching. Nucl Acids Res 37:W202–W208

    Article  Google Scholar 

  • Vandepoele K, Simillion C, Peer YV (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Wu LQ, Fan ZM, Guo L, Li YQ, Zhang WJ, Qu LJ, Chen ZL (2003) Overexpression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice. Chin Sci Bull 48:2050–2056

    Article  CAS  Google Scholar 

  • Yim WC, Lee BM, Jang CS (2009) Expression diversity and evolutionary dynamics of rice duplicate genes. Mol Genet Genomics 281:483–493

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock JH (1976) Laboratory manual for physiological studies of rice (3 edn). International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li SG, Li H, Zhou J, Ni PX (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:266–281

    Article  CAS  Google Scholar 

  • Zeng L, Lesch SM, Grieve CM (2003) Rice growth and yield response to changes in water depth and salinity stress. Agric Water Manage 59:67–75

    Article  Google Scholar 

  • Zeng YW, Yang SM, Cui H, Yang XJ, Xu LM, Du J, Pu XY, Li ZC, Cheng ZQ, Huang XQ (2009) QTLs of cold tolerance-related traits at the booting stage for NIL-RILs in rice revealed by SSR. Genes Genom 312:143–154

    Article  Google Scholar 

  • Zhang PG, Huang SZ, Pin AL, Adams KL (2010) Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis. Mol Biol Evol 27:1686–1697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tackle Key Program in Science and Technology of the Science and Technology Ministry (2011BAD35B02-01) and supported by the Program in Science and Technology of the Science and Technology Ministry (2011BAD16B11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Tang Zou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 2258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Xie, DW., Zhao, HW. et al. Genome-wide identification of the class III aminotransferase gene family in rice and expression analysis under abiotic stress. Genes Genom 35, 597–608 (2013). https://doi.org/10.1007/s13258-013-0108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0108-2

Keywords

Navigation