Skip to main content
Log in

Transmission ratio distortion in an interspecific cross between Fusarium circinatum and Fusarium subglutinans

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Previously, an interspecific cross between Fusarium circinatum and Fusarium subglutinans was used to generate a genetic linkage map. A ca. 55 % of genotyped markers displayed transmission ratio distortion (TRD) that demonstrated a genome-wide distribution. The working hypothesis for this study was that TRD would be non-randomly distributed throughout the genetic linkage map. This would indicate the presence of distorting loci. Using a genome-wide threshold of α = 0.01, 79 markers displaying TRD were distributed on all 12 linkage groups (LGs). Eleven putative transmission ratio distortion loci (TRDLs), spanning eight LGs, were identified in regions containing three or more adjacent markers displaying distortion. No epistatic interactions were observed between these TRDLs. Thus, it is uncertain whether the genome-wide TRD was due to linkage between markers and genomic regions causing distortion. The parental origins of markers followed a non-random distribution throughout the linkage map, with LGs containing stretches of markers originating from only one parent. Thus, due to the nature of the interspecific cross, the current hypothesis to explain these observations is that the observed genome-wide segregation was caused by the high level of genomic divergence between the parental isolates. Therefore, homologous chromosomes do not align properly during meiosis, resulting in aberrant transmission of markers. This also explains previous observations of the preferential transmission of F. subglutinans alleles to the F1 progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bowden RL, Fuentes-Bueno I, Leslie JF, Lee J, Lee Y-W (2008) Methods for detecting chromosome rearrangements in Gibberella zeae. Cereal Res Commun 36(Suppl. B):603–608

    Article  Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52

    Article  PubMed  CAS  Google Scholar 

  • Carson HL, Kaneshiro KY (1976) Drosophila of Hawaii: systematics and ecological genetics. Annu Rev Ecol Syst 7:311–345

    Article  Google Scholar 

  • Cheng R, Kleinhofs A, Ukai Y (1998) Method for mapping a partial lethal-factor locus on a molecular-marker linkage map of a backcross and doubled-haploid population. Theor Appl Genet 97:293–298

    Article  CAS  Google Scholar 

  • De Vos L, Myburg AA, Wingfield MJ, Desjardins AE, Gordon TR, Wingfield BD (2007) Complete genetic linkage maps from an interspecific cross between Fusarium circinatum and Fusarium subglutinans. Fungal Genet Biol 44:701–714

    Article  PubMed  Google Scholar 

  • De Vos L, Van der Nest MA, Van der Merwe NA, Myburg AA, Wingfield MJ, Wingfield BD (2011) Genetic analysis of growth, morphology and pathogenicity in the F1 progeny of an interspecific cross between Fusarium circinatum and Fusarium subglutinans. Fungal Biol 115:902–908

    Article  PubMed  Google Scholar 

  • Desjardins AE, Plattner RD, Nelson PE (1997) Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl Environ Microbiol 63:1838–1842

    PubMed  CAS  Google Scholar 

  • Desjardins AE, Plattner RD, Gordon TR (2000) Gibberella fujikuroi mating population A and Fusarium subglutinans from teosinte species and maize from Mexico and Central America. Mycol Res 104:865–872

    Article  Google Scholar 

  • Dobzhansky T (1951) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Friel CJ, Desjardins AE, Kirkpatrick SC, Gordon TR (2007) Evidence for recombination and segregation of pathogenicity to pine in a hybrid cross between Gibberella circinata and G. subglutinans. Mycol Res 111:827–831

    Article  PubMed  CAS  Google Scholar 

  • Fusarium Comparative Sequencing Project (2011) Broad Institute of Harvard and MIT. http://0-www.broadinstitute.org.innopac.up.ac.za/

  • Gale LR, Bryant JD, Calvo S, Giese H, Katan T, O’Donnell K, Suga H, Taga M, Usgaard TR, Ward TJ, Kistler HC (2005) Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171:985–1001

    Article  PubMed  CAS  Google Scholar 

  • Giruad T, Refrégier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genet Biol 45:791–802

    Article  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  PubMed  CAS  Google Scholar 

  • Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Jiang C-X, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploidy Gossypium (cotton). Evolution 54:798–814

    PubMed  CAS  Google Scholar 

  • Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NJ, Plattner RD (2002) A genetic map of Gibberella zeae (Fusarium graminearum). Genetics 160:1451–1460

    PubMed  CAS  Google Scholar 

  • Kathariou S, Spieth PT (1982) Spore killer polymorphism in Fusarium moniliforme. Genetics 102:19–24

    PubMed  CAS  Google Scholar 

  • Klug WS, Cummings MR (1994) Concepts of genetics. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  • Lee H-R, Bae I-H, Park S-W, Kim H-J, Min W-K, Han J-H, Kim K-T, Kim BD (2009) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 27:21–37

    Article  PubMed  CAS  Google Scholar 

  • Lepoint PCE, Munaut FTJ, Maraite HMM (2005) Gibberella xylarioides sensu lato from Coffea canephora: a new mating population in the Gibberella fujikuroi species complex. Appl Environ Microbiol 71:8466–8471

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, Oxford

    Google Scholar 

  • Leslie JF, Zeller KA, Logrieco A, Mulé G, Moretti A, Ritieni A (2004a) Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl Environ Microbiol 70:2254–2262

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Zeller KA, Wohler M, Summerell BA (2004b) Interfertility of two mating populations in the Gibberella fujikuroi species complex. Eur J Plant Pathol 110:611–618

    Article  CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1940) Speciation phenomena in birds. Am Nat 74:249–278

    Article  Google Scholar 

  • McDaniel SF, Willis JH, Shaw AJ (2007) A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics 176:2489–2500

    Article  PubMed  CAS  Google Scholar 

  • Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW (2004) Genetics of postzygotic isolation in eucalyptus: whole-genome analysis of barriers to introgression in a wide interspecific cross of Eucalyptus grandis and E. globulus. Genetics 166:1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458

    Article  Google Scholar 

  • Raju NB (1994) Ascomycete spore killers: chromosomal elements that distort genetic ratios among the products of meiosis. Mycologia 86:461–473

    Article  Google Scholar 

  • Samuels GJ, Nirenberg HI, Seifert KA (2001) Perithecial species of Fusarium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium: Paul E. Nelson memorial symposium. APS Press, St. Paul, pp 1–14

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Whitkus R (1998) Genetics of adaptive radiation in Hawaiian and Cook Island species of tetramolopium (Asteraceae). II. Genetic linkage map and its implications for interspecific breeding barriers. Genetics 150:1209–1216

    PubMed  CAS  Google Scholar 

  • Wingfield BD, Steenkamp ET, Santana QC, Coetzee MPA, Bam S, Barnes I, Beukes CW, Chan AWY, De Vos L, Fourie G et al (2012) First fungal genome sequence from Africa: a preliminary analysis. S Afr J Sci 108:1–9

    Google Scholar 

  • Xu J-R, Yan K, Dickman MB, Leslie JF (1995) Electrophoretic karyotypes distinguish the biological species of Gibberella fujikuroi (Fusarium section Liseola). Mol Plant-Microbe Interact 8:74–84

    Article  CAS  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Zeller KA, Summerell BA, Bullock S, Leslie JF (2003) Gibberella konza (Fusarium konzum) sp. nov. from prairie grasses, a new species in the Gibberella fujikuroi species complex. Mycologia 95:943–954

    Article  PubMed  Google Scholar 

  • Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiol Rev 59:686–698

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF), University of Pretoria, Forestry and Agricultural Biotechnology Institute (FABI), the DST/NRF Center of Excellence in Tree Health Biotechnology (CTHB), members of the Tree Protection Co-operative Programme (TPCP), and the Andrew Mellon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieschen De Vos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vos, L., van der Merwe, N.A., Wingfield, M.J. et al. Transmission ratio distortion in an interspecific cross between Fusarium circinatum and Fusarium subglutinans . Genes Genom 35, 177–183 (2013). https://doi.org/10.1007/s13258-013-0066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0066-8

Keywords

Navigation