Skip to main content
Log in

Characterization of Imcrop, a Mutator-like MITE family in the rice genome

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Sequence comparisons of ammonium transporter 1–2 genes (OsAMT1-2) in different rice accessions revealed a MITE insertion in the upstream region of the gene. The 391-bp MITE, classified as a Mutator superfamily member and named Imcrop, included terminal inverted repeat (TIR) and 9-bp target site duplication (TSD) sequences. We identified 151 Imcrop elements dispersed on 12 chromosomes of the japonica reference genome. Of these, 12.6% were found in genic regions and 33.1% were located within 1.5 kb of annotated rice genes. We constructed comparative insertion maps with 111 and 102 intact Imcrop elements in the japonica and indica reference genomes, respectively. The Imcrop elements showed relatively even distribution across all chromosomes although their frequency was higher on chromosomes 1, 3, and 4 in both genomes. Seventy seven Imcrop elements were detected in both subspecies, whereas 34 and 25 insertions were found only in the japonica or indica genome, respectively. We compared insertion polymorphisms of 19 Imcrop elements found inside genes in 48 Korean rice cultivars, consisting of 42 japonica and six Tongil-types (indica-japonica cross). Thirteen insertions were common to all cultivars indicating these elements were present before indica-japonica divergence. The six other elements showed insertion polymorphisms among accessions, showing their recent insertion history or no critical positive effect of their insertion on the rice genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bureau TE and Wessler SR (1992) Tourist — a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294.

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM and Santiago N (2003) Plant LTR-retrotransposons and MITEs: Control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11.

    Article  PubMed  CAS  Google Scholar 

  • El Amrani A, Marie L, Ainouche A, Nicolas J, and Couee I (2002) Genome-wide distribution and potential regulatory functions of AtATE, a novel family of miniature inverted-repeat transposable elements in Arabidopsis thaliana. Mol. Genet. Genomics 267:459–471.

    Article  PubMed  Google Scholar 

  • Feschotte C, Jiang N, and Wessler SR (2002) Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet. 3:329–341.

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Swamy L, and Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758.

    PubMed  CAS  Google Scholar 

  • Gonzalez J and Petrov D (2009) MITEs — the ultimate parasites. Science 325:1352–1353.

    Article  PubMed  CAS  Google Scholar 

  • Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, and Barriere Y (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet. 5:19.

    Article  PubMed  Google Scholar 

  • Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, and Cheng Z (2009) Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 93:274–281.

    Article  PubMed  CAS  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800.

    Article  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY, Hirochika H, Eddy SR, McCouch SR, and Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang XY, and Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr. Opin. Plant Biol. 7:115–119.

    Article  PubMed  CAS  Google Scholar 

  • Juretic N, Bureau TE, and Bruskiewich RM (2004) Transposable element annotation of the rice genome. Bioinformatics 20:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV and Jurka J (2007) Helitrons on a roll: Eukaryotic rolling-circle transposons. Trends Genet. 23:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV and Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc. Natl. Acad. Sci. USA 103:4540–4545.

    Article  PubMed  CAS  Google Scholar 

  • Karki S, Tsukiyama T, Okumoto Y, Rizal G, Naito K, Teraishi M, Nakazaki T, and Tanisaka T (2009) Analysis of distribution and proliferation of mPing family transposons in a wild rice (Oryza rufipogon Griff.). Breeding Sci. 59:297–307.

    Article  CAS  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, and Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Oyanagi M, Fukuda T, Ohno Y, Hongo C, Itoh Y, Koda T, and Ozeki Y (2008) Role of miniature inverted repeat trans posable elements inserted into the promoter region of a carrot phenylalanine ammonia-lyase gene and its gene expression. Plant Biotech. 25:473–481.

    Article  CAS  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, and Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7:474.

    Article  PubMed  Google Scholar 

  • Kuang HH, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Shu OY, Jiang JM, Buell CR, and Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs. Genome Res. 19:42–56.

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Kim DH, Lim MH, Long Y, Meng JL, Lim KB, Kim JA, Kim JS, Jin M, Kim HI, et al. (2007) Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol. Genet. Genomics 278:361–370.

    Article  PubMed  CAS  Google Scholar 

  • Lisch D and Jiang N (2009) Muataor and MULE transposons. Maize Handbook 2:277–306.

    Article  Google Scholar 

  • Lyons M, Cardle L, Rostoks N, Waugh R, and Flavell A (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol. Genet. Genomics 280:275–285.

    Article  PubMed  CAS  Google Scholar 

  • Murray MG and Thopson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 8:4321–4325.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harbour Sym. Quant. Biol. 16:13–47.

    Article  CAS  Google Scholar 

  • Moon S, Jung KH, Lee D, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, and An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol. 47:1473–1483.

    Article  PubMed  CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, and Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172.

    Article  PubMed  CAS  Google Scholar 

  • Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, and Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet. Syst. 83:321–329.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S and Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res. 32:D360–3.

    Article  PubMed  CAS  Google Scholar 

  • Santiago N, Herraiz C, Goni JR, Messeguer X, and Casacuberta JM (2002) Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Mol. Biol. Evol. 19:2285–2293.

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, and Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J. 25:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR, Bureau TE, and White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5:814–821.

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8:973–982.

    Article  PubMed  CAS  Google Scholar 

  • Yang G and Hall TC (2003) MDM-1 and MDM-2: Two Mutator-derived MITE families in rice. J. Mol. Evol. 56:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Lee YH, Jiang YM, Shi XY, Kertbundit S, and Hall TC (2005) A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell 17:1559–1568.

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Nagel DH, Feschotte C, Hancock CN, and Wessler SR (2009) Tuned for transposition: Molecular determinants underlying the hyperactivity of a Stowaway MITE. Science 325:1391–1394.

    Article  PubMed  CAS  Google Scholar 

  • Yang TJ, Kwon SJ, Choi BS, Kim JS, Jin M, Lim KB, Park JY, Kim JA, Lim MH, Kim HI, et al. (2007) Characterization of terminal-repeat retrotransposon in miniature (TRIM) in Brassica relatives. Theor. Appl. Genet. 114:627–636.

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92.

    PubMed  CAS  Google Scholar 

  • Zhang XY, Jiang N, Feschotte C, and Wessler SR (2004) PIF- and Pong-like transposable elements: Distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986.

    Article  PubMed  CAS  Google Scholar 

  • Zuker M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13):3406–3415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, YJ., Kim, KY., Shin, WC. et al. Characterization of Imcrop, a Mutator-like MITE family in the rice genome. Genes Genom 34, 189–198 (2012). https://doi.org/10.1007/s13258-011-0193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0193-z

Keywords

Navigation