Skip to main content
Log in

The molecular signature of in vitro senescence in human mesenchymal stem cells

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

We investigated the molecular characteristics of in vitro senescence in human bone marrow-derived mesenchymal stem cells. After prolonged in vitro expansion, MSCs underwent cellular senescence characterized by growth arrest and distinctive morphological alterations, such as an enlarged and flattened morphology, and SA β-gal activity. Slight reduction in telomere length was observed during 16 population doublings, however, telomere length was maintained much longer length than 4.5 kb, the critical size of the telomere. The expression of p16INK4a was increased during in vitro culture of MSCs and other cell cycle inhibitory proteins, such as p53, p21 and p14 were not increased in Western blot analysis. In whole-transcriptome oligonucleotide microarray analysis between highly proliferative MSCs at early passage and senescent MSCs at late passage, we identified 583 differentially expressed genes by more than two-fold change and paired T-test (P-value <0.05). Gene ontology analysis revealed that genes involved in vacuole, cell death and chromatin assembly were up-regulated in senescent MSCs, and genes involved in cell cycle, DNA repair, cytoskeletal part and DNA metabolism were down-regulated. This study will be valuable in understanding the in vitro senescence of mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R and Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp. Hematol. 28: 707–715.

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S and Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A and Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 7: 14–20.

    Article  PubMed  Google Scholar 

  • Brenner AJ, Stempfer MR and Aldaz CM (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17: 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J. (2005) Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell 120: 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I and Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 92: 9363–9367.

    Article  CAS  PubMed  Google Scholar 

  • Herbic U, Jobling WA, Chen BP, Chen DJ and Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14: 501–513.

    Article  Google Scholar 

  • Herman MT and Narita M (2007) Oncogenes and senescence: breaking down in the fast lane. Genes Dev. 21: 1–5.

    Article  Google Scholar 

  • Itahana K, Zou Y, Itahana Y, Martinez JL, Jacobs J, Lohuizen MV, Band V, Campisi J and Dimri GP (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23: 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE and Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443: 421–426.

    CAS  PubMed  Google Scholar 

  • Jeyapalan JC and Sedivy JM (2008) Cellular senescence and organismal aging. Mech. Ageing Dev. 129: 467–474.

    Article  CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H and Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24: 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S and Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443: 453–457.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L and Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114: 1299–1307.

    CAS  PubMed  Google Scholar 

  • Le Blanc K and Pittenger MF (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7: 36–45.

    Article  PubMed  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE and Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443: 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Aoyama T, Nakayama T, Nakamata T, Nishijo K, Nakamura T, Kiyono T and Toguchida J (2002) Clonal heterogeneity in differentiation potential of immortalized mesenchymal stem cells. Biochem. Biophys. Res. Commun. 295: 354–361.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez RD, Morales CP, Herbert BS, Rodhe JM, Passons C, Shay JW and Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflects inadequate growth conditions. Genes Dev. 15: 398–403.

    Article  CAS  PubMed  Google Scholar 

  • Roobrouck VD, Ulloa-Montoya F and Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp. Cell Res. 314: 1937–1944.

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Jamieson CHM and Weissman IL (2008) Stem cells and the pathways to aging and cancer. Cell 132: 681–696.

    Article  CAS  PubMed  Google Scholar 

  • Ryu E, Hong S, Kang J, Woo J, Park J, Lee J and Seo JS (2008) Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 371: 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Sethe S, Scutt A and Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res. Rev. 5: 91–116.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ and DePinho RA (2000) Cellular senescence: Mitotic clock or culture shock? Cell 102: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M, Kohno Y, Ito K, Fujibayashi S, Neo M, et al. (2007) Expression of the p16INK4a gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylatio during in vitro expansion. Stem Cells 25: 2371–2382.

    Article  CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C and Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33: 919–926.

    Article  PubMed  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W and Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220: 186–193.

    Article  Google Scholar 

  • von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Faagna F and Jackson SP (2005) Human cell senescence as a DNA damage response. Mech. Ageing Dev. 126: 111–117.

    Article  Google Scholar 

  • Wagner W and Ho AD (2007) Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev. 3: 239–248.

    Article  PubMed  Google Scholar 

  • Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, et al. (2008) Replicative senescence of mesenchymal stem cells:A continuous and organized process. PLOS One 3: 1–12.

    Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, et al. (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33: 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Soda Y, Takahashi K, Bai Y, Mitsuru A, Igura K, Yamaguchi S, Tani K, Tojo A and Takahashi T (2006) Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochem. Biophys. Res. Commun. 351: 853–859.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Do Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, H.B., Ahn, HJ., Lee, WJ. et al. The molecular signature of in vitro senescence in human mesenchymal stem cells. Genes Genom 32, 87–93 (2010). https://doi.org/10.1007/s13258-010-0868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-010-0868-x

Keywords

Navigation