Skip to main content
Log in

Comparison research and phylogenetic implications of mitochondrial control regions in four soft-shelled turtles of Trionychia (Reptilia, Testudinata)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The mitochondrial control regions (CRs) and flanking sequences of Pelodiscus sinensis, Apalone ferox, Palea steindachneri and Carettochelys insculpta were obtained using Long-PCR with gene-specific primers. The CR lengths of the four species were 1843 bp, 1356 bp, 1725 bp, and 969 bp. The base composition percentages of A+T were 60.5%, 60.7%, 65.7%, 64.7%, respectively. Combined with CR sequences of other three soft-shelled turtles published in GenBank (Pelodiscus sinensis, Korea, AY962573; Dogania subplana, AF366350; Lissemys punctata, EF050073), we compared the CR structures and identified three functional domains (TAS, CD and CSB) in which conserved sequence blocks (TAS, CSB -F, CSB-1, CSB-2 and CSB-3) were also successfully identified according to their sequence similarities to those of other turtles. The variable numbers of tandem repeats (VNTRs 1) with 50–52 bp motif were identified at 5′-end of CR among the five soft-shelled turtles P. sinensis (China), P. sinensis (Korea), A. ferox, P. steindachneri, D. subplana. The copy number of the VNTRs varied from 5 to 15. VNTRs 2 with 2–11 bp motif were identified in the 3′- end of CR among all of the six soft-shelled turtles with variable number of motifs from 4 to 29. Moreover, VNTRs 3 with 6 bp motif were identified between CSB-1 and CSB-2 of CR both in P. sinensis (China) and P. sinensis (Korea), in which the number of motifs varied from 19 to 29. The types and distribution of VNTRs of the six soft-shelled turtles were also discussed. With Alligator mississippiensis as an outgroup, combined with the CR sequences (excluding VNTRs) of other five turtles which were published in GenBank, the molecular phylogenetic trees were constructed using PAUP 4.0b10 and MrBayes ver. 3.0. The results strongly supported the monophyly of Carretochelyidae and Carettochelyidae as sister group to an assemblage of Cryptodira. Our research suggested that the earliest phylogenetic tree splits into three separated basal branches; the Pelomedusidira (Pelomedusa subrufa), the Carettochelyidae (C. insculpta), and an assemblage of Cryptodira and the C. insculpta that might be a representation of distinctive suborder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bruijn HL, Coulson AR, Eperon IC, Sanger F and Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. Mol. Biol. 156: 683–717.

    Article  CAS  Google Scholar 

  • Barley AJ (2009) Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Mol. Phylogenet. Evol. 55: 1189–1194.

    Article  PubMed  Google Scholar 

  • Brehm A, Harris DJ, Alves C, Jesus J, Thomarat F and Vicente L (2003) Structure and evolution of the mitochondrial DNA complete control region in the lizard Lacerta dugesii (Lacertidae Sauria). J. Mol. Evol. 56: 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Broughton RE and Dowling TE (1997) Evolutionary dynamics of tandem repeats in the mitochondrial DNA control region of the minnow Cyprinella spiloptera. Mol. Biol. Evol. 14: 1187–1196.

    CAS  PubMed  Google Scholar 

  • Buroker NE, Brown JR, Gilbert TA, O’Hara PJ, Beckenbach AT, Thomas WK and Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124: 157–163.

    CAS  PubMed  Google Scholar 

  • Delport W, Ferguson JWH and Bloomer P (2002) Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes). J. Mol. Evol. 54: 794–806.

    Article  CAS  PubMed  Google Scholar 

  • Engstrom TN, Shaffer HB and Mccord WP (2004) Multiple DataSets, High Homoplasy, and the Phylogeny of Softshell Turtles (Testudines: Trionychidae). Syst. Biol. 53: 693–710.

    Article  PubMed  Google Scholar 

  • Fang SG and Xu QH (2006) Variable number tandem repeats in the mitochondrial DNA Control region of the Chinese alligator, Alligator sinensis. Amphibia-Reptilia 27: 93–101.

    Article  Google Scholar 

  • Foran DR, Hixson JE and Brown WM (1988) Comparisons of ape and human sequences that regulate mitochondrial DNA transcription and Dloop synthesis. Nucl. Acids Res. 16: 5841–5861.

    Article  CAS  PubMed  Google Scholar 

  • Fritz U and Havas P (2007) Checklist of Chelonians of the World. Verteb. Zool. 57(2): 149–368.

    Google Scholar 

  • Fujita MK, Engstrom TN, Starkey DE and Shaffer HB (2004) Turtle phylogeny: Insights from a novel nuclear intron. Mol. Phylogenet. Evol. 31: 1031–1040.

    Article  CAS  PubMed  Google Scholar 

  • Fu YY, Gu WW, Liu YZ, Peng JY and Chang H (2006) Genetic analysis of the polymorphism of mtDNA D-loop and microsatellite loci in Tibet mini-pigs. Acta Laboratorium Animalis Scientia Sinica 14: 318–321.

    Google Scholar 

  • Gaffney ES and Meylan PA (1988) A phylogeny of turtles. Pages 157–219 in the phylogeny and classification of tetrapods (M.J. Benton, ed.). Clared on Press, Oxford, England.

    Google Scholar 

  • Gaffney ES, Meylan PA and Wyss AR (1991) A computer assisted analysis of the relationships of the higher categories of turtles. Cladistics 7: 313–335.

    Article  Google Scholar 

  • Hell TA (1999). Bioedit A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids Sym. Posit. Series 41: 95–98.

    Google Scholar 

  • Huelsenbeck J and Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Krenz JG, Naylor GJP, Shaffer HB and Janzen FJ (2005) Molecular phylogenetics and evolution of turtles. Mol. Phylogenet. Evol. 37: 178–191.

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa Y and Endo H (2004) Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Res. 11: 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa Y and Nishida M (1999) Complete mitochondrial DNA sequences of the green turtle and bluetailed mole skink: statistical evidence for archoLacertilian affinity of turtles. Mol. Biol. Evol. 16: 784–792.

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura k and Nei M (2004) An integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Marshall HD and Baker AJ (1998) Rates and patterns of mitochondrial DNA sequence evolution in Fringilline finches (Fringilla spp.) and the Greenfinch (Carduelis chloris). Mol. Biol. Evol. 15: 638–646.

    CAS  PubMed  Google Scholar 

  • Meylan PA (1987) The phylogenetic relationships of soft-shelled turtles (family Trionychidae). Bull. Amer. Mus. Nat. Hist. 186:1–101.

    Google Scholar 

  • Peng QL, Pu YG, Wang ZF and Nie LW (2005) Complete mitochondrial genome sequence analysis of Chinese softshell turtle (Pelodiscus sinensis). Chin. J. Biochem. Mol. Biol. 21: 591–596.

    CAS  Google Scholar 

  • Posada D and Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Randi E and Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449–462.

    Article  CAS  PubMed  Google Scholar 

  • Ray DA and Densmore LD (2002) The crocodilian mitochondrial control region: general structure, conserved sequences and evolutionary implications. J. Exp. Zool. 294: 334–345.

    Article  CAS  PubMed  Google Scholar 

  • Rui JL, Wang YT and Nie LW (2008) The complete mitochondrial DNA genome of Eremias brenchleyi (Reptilia: Lacertidae) and its phylogeny position within squamata reptiles. Amphibia-Reptilia 30: 25–35.

    Article  Google Scholar 

  • Saccone C, Pesole G and Sbisà E (1991) The main regulatory region of mammalian mitochondrial DNA: Structure function model and evolutionary pattern. J. Mol. Evol. 33: 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J and Russell DW (2001) Molecular Cloning: A laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G and Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125–140.

    Article  PubMed  Google Scholar 

  • Shaffer HB, Meylan P and McKnight ML (1997) Tests of turtle phylogeny: molecular, morphological, and paleontological approaches. Syst. Biol. 46: 235–268.

    CAS  PubMed  Google Scholar 

  • Southern SO, Southern PJ and Dizon AE (1988) Molecular characterizaon of a cloned dolphin mitochondrial genome. J. Mol. Evol. 28: 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenenc Analysis using Parsimony (*and Other Methods), Version 4.0b l0. Sunderland: Sinauer Associates.

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876–4882.

    Article  Google Scholar 

  • Turtle Taxonomy Working Group (2007) An annotated list of modern turtle terminal taxa with comments on areas of taxonomic instability and recent change. Chelonian Research Monographs 4: 173–199.

    Google Scholar 

  • Walberg MW and Clayton DA (1981) Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucl. Acids Res. 9: 5411–5421.

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Zhang Y, Wang N, Zhang L and Nie LW (2008) Comparison of Mitochondrial Control Region Sequences Between Chelydridae and Platysternidae. Zool. Res. 29: 127–133.

    Article  CAS  Google Scholar 

  • Zardoya R and Meyer A (1998) Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtles, Pelomedusa subrufa. Gene 216: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Nie LW, Huang YQ, Pu YG and Zhang L (2009) The Mitochondrial DNA Control Region Comparation Studies of Four Hinged Turtles and Its Phylogentic Significance of the Genus Cuora sensu lato (Testudinata: Geoemydidae). Genes & Genomics 31: 349–359.

    Article  Google Scholar 

  • Zhang Y, Zhang E and He SP (2003) Studies on the structure of the control region of the bagridae in China and its phylogenetic significance. Acta Hydrobiol. Sinica 27: 463–467.

    CAS  Google Scholar 

  • Zhou T and Zhao EM (2004) The category map of Chelonia. Agriculture Press, China.

    Google Scholar 

  • Zhu SH, Zheng WJ, Zou JX, Yang YC and Shen XQ (2007) Mitochondrial DNA Control Region Structure and Molecular Phylogenetic Relationship of Carangidae. Zool. Res. 28: 606–614.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuwang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, L., Nie, L., Li, X. et al. Comparison research and phylogenetic implications of mitochondrial control regions in four soft-shelled turtles of Trionychia (Reptilia, Testudinata). Genes Genom 32, 291–298 (2010). https://doi.org/10.1007/s13258-010-0015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-010-0015-8

Key words

Navigation