Skip to main content
Log in

Statistical Development of Animal Density Estimation Using Random Encounter Modelling

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Camera trapping is widely used in ecological studies to estimate animal density, although these studies are largely restricted to animals that can be identified to the individual level. The random encounter model, developed by Rowcliffe et al. (J Anal Ecol 45(4):1228–1236, 2008), estimates animal density from camera-trap data without the need to identify animals. Although the REM can provide reliable density estimates, it lacks the potential to account for the multiple sources of variance in the modelling process. The density estimator in REM is a ratio, and since the variance of a ratio estimator is intractable, we examine and compare the finite sample performance of many approaches for obtaining confidence intervals via simulation studies. We also propose an integrated random encounter model as a parametric alternative, which is flexible and can incorporate covariates and random effects. A data example from Whipsnade Wild Animal Park, Bedfordshire, south England, is used to demonstrate the application of these methods.

Supplementary materials accompanying this paper appear on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrull, J., Mate, I., Ruiz-Olmo, J., Casanovas, J., Gosàlbez, J., and Salicrú, M. (2014). Factors and mechanisms that explain coexistence in a mediterranean carnivore assemblage: an integrated study based on camera trapping and diet. Mammalian Biology-Zeitschrift für Säugetierkunde, 79(2):123–131.

    Article  Google Scholar 

  • Besbeas, P., Freeman, S. N., Morgan, B. J., and Catchpole, E. A. (2002). Integrating mark–recapture–recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58(3):540–547.

    Article  MathSciNet  MATH  Google Scholar 

  • Bridges, A. S. and Noss, A. J. (2011). Behavior and activity patterns. In Camera Traps in Animal Ecology, pp. 57–69. Springer.

  • Briggs, A. H., Mooney, C. Z., and Wonderling, D. E. (1999). Constructing confidence intervals for cost-effectiveness ratios: an evaluation of parametric and non-parametric techniques using monte carlo simulation. Statistics in Medicine, 18(23):3245–3262.

    Article  Google Scholar 

  • Buckland, S., Breiwick, J., Cattanach, K., and Laake, J. (1993). Estimated population size of the california gray whale. Marine Mammal Science, 9(3):235–249.

    Article  Google Scholar 

  • Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D., and Thomas, L. (2001). Introduction to distance sampling estimating abundance of biological populations.

  • Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., and Boutin, S. (2015). Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3):675–685.

    Article  Google Scholar 

  • Carbone, C., Christie, S., Conforti, K., Coulson, T., Franklin, N., Ginsberg, J., Griffiths, M., Holden, J., Kawanishi, K., Kinnaird, M., et al. (2001). The use of photographic rates to estimate densities of tigers and other cryptic mammals. In Animal Conservation Forum, vol 4, pp. 75–79. Cambridge: Cambridge University Press.

  • Carpenter, J. and Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? a practical guide for medical statisticians. Statistics in medicine, 19(9):1141–1164.

    Article  Google Scholar 

  • Chandler, R. B., Royle, J. A., et al. (2013). Spatially explicit models for inference about density in unmarked or partially marked populations. The Annals of Applied Statistics, 7(2):936–954.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhary, M. A. and Stearns, S. C. (1996). Estimating confidence intervals for cost-effectiveness ratios: an example from a randomized trial. Statistics in Medicine, 15(13):1447–1458.

    Article  Google Scholar 

  • Cole, D. J. and McCrea, R. S. (2016). Parameter redundancy in discrete state-space and integrated models. Biometrical Journal, 58(5):1071–1090.

    Article  MathSciNet  MATH  Google Scholar 

  • Cole, D. J., Morgan, B. J., and Ridout, M. S. (2003). Generalized linear mixed models for strawberry inflorescence data. Statistical Modelling, 3(4):273–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Dinh, P. and Zhou, X.-H. (2006). Nonparametric statistical methods for cost-effectiveness analyses. Biometrics, 62(2):576–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Dufour, J.-M. (1997). Some impossibility theorems in econometrics with applications to structural and dynamic models. Econometrica: Journal of the Econometric Society, pp. 1365–1387.

  • Efford, M. G., Dawson, D. K., and Borchers, D. L. (2009). Population density estimated from locations of individuals on a passive detector array. Ecology, 90(10):2676–2682.

    Article  Google Scholar 

  • Fieller, E. C. (1944). A fundamental formula in the statistics of biological assay, and some applications. Quarterly Journal of Pharmacy and Pharmacology, 17(2):117–123.

    Google Scholar 

  • Fieller, E. C. (1954). Some problems in interval estimation. Journal of the Royal Statistical Society: Series B (Methodological), 16(2):175–185.

    MathSciNet  MATH  Google Scholar 

  • Franz, V. H. (2007). Ratios: A short guide to confidence limits and proper use. arXiv preprint arXiv:0710.2024.

  • Gleser, L. J. and Hwang, J. T. (1987). The nonexistence of 100 (1-\(\alpha \))% confidence sets of finite expected diameter in errors-in-variables and related models. The Annals of Statistics, pp. 1351–1362.

  • Green, P. J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal of the Royal Statistical Society. Series B (Methodological), pp. 149–192.

  • Hilbe, J. M. (2011). Negative Binomial Regression. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Howe, E. J., Buckland, S. T., Després-Einspenner, M.-L., and Kühl, H. S. (2017). Distance sampling with camera traps. Methods in Ecology and Evolution, 8(11):1558–1565.

    Article  Google Scholar 

  • Hutchinson, J. and Waser, P. M. (2007). Use, misuse and extensions of “ideal gas” models of animal encounter. Biological Reviews, 82(3):335–359.

    Article  Google Scholar 

  • Jennelle, C. S., Runge, M. C., and MacKenzie, D. I. (2002). The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. Animal Conservation, 5(2):119–120.

    Article  Google Scholar 

  • McCallum, J. (2013). Changing use of camera traps in mammalian field research: habitats, taxa and study types. Mammal Review, 43(3):196–206.

    Article  Google Scholar 

  • McCrea, R. S. and Morgan, B. J. (2014). Analysis of Capture-Recapture Data. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  • Miller, D. L., Burt, M. L., Rexstad, E. A., and Thomas, L. (2013). Spatial models for distance sampling data: recent developments and future directions. Methods in Ecology and Evolution, 4(11):1001–1010.

    Article  Google Scholar 

  • Morgan, B. J. (2008). Applied Stochastic Modelling. Boca Raton: CRC press.

    Book  Google Scholar 

  • Newman, K., Buckland, S., Morgan, B. J., King, R., Borchers, D., Cole, D. J., Besbeas, P., Gimenez, O., and Thomas, L. (2014). Modelling Population Dynamics. New York: Springer.

    Book  Google Scholar 

  • O’Brien, B. J., Drummond, M. F., Labelle, R. J., and Willan, A. (1994). In search of power and significance: issues in the design and analysis of stochastic cost-effectiveness studies in health care. Medical Care, pp. 150–163.

  • O’Brien, T. G., Kinnaird, M. F., and Wibisono, H. T. (2003). Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. In Animal Conservation Forum, volume 6, pp. 131–139. Cambridge: Cambridge University Press.

  • Polsky, D., Glick, H. A., Willke, R., et al. (1997). Confidence intervals for cost-effectiveness ratios: a comparison of four methods. Health Economics, 6(3):243–252.

    Article  Google Scholar 

  • Puth, M.-T., Neuhäuser, M., and Ruxton, G. D. (2015). On the variety of methods for calculating confidence intervals by bootstrapping. Journal of Animal Ecology, 84(4):892–897.

    Article  Google Scholar 

  • R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Ridout, M. S. and Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3):322–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Rowcliffe, J. M., Field, J., Turvey, S. T., and Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology, 45(4):1228–1236.

    Article  Google Scholar 

  • Rowcliffe, J. M., Kays, R., Carbone, C., and Jansen, P. A. (2013). Clarifying assumptions behind the estimation of animal density from camera trap rates. Journal of Wildlife Management.

  • Rowcliffe, M., Carbone, C., Jansen, P. A., Kays, R., and Kranstauber, B. (2011). Quantifying the sensitivity of camera traps: an adapted distance sampling approach. Methods in Ecology and Evolution, 2(5):464–476.

    Article  Google Scholar 

  • Royle, J. A. and Young, K. V. (2008). A hierarchical model for spatial capture–recapture data. Ecology, 89(8):2281–2289.

    Article  Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6):110–114.

    Article  Google Scholar 

  • Sherman, M., Maity, A., and Wang, S. (2011). Inferences for the ratio: Fieller’s interval, log ratio, and large sample based confidence intervals. AStA Advances in Statistical Analysis, 95(3):313.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Kempen, G. and Van Vliet, L. (2000). Mean and variance of ratio estimators used in fluorescence ratio imaging. Cytometry Part A, 39(4):300–305.

    Article  Google Scholar 

  • Winkelmann, R. (2008). Econometric Analysis of Count Data. New York: Springer.

    MATH  Google Scholar 

  • Zhou, M., McCrea, R. S., Matechou, E., Cole, D. J., and Griffths, R. A. (2019). Removal models accounting for temporary emigration. Biometrics, 75:24–35.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

FUNDING This work was carried out as part and funded by the University of Kent 50th Anniversary Postgraduate Project and Engineering and Physical Sciences Research Council (EP/1000917/1-via St Andrews)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. A. S. Jourdain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jourdain, N.O.A.S., Cole, D.J., Ridout, M.S. et al. Statistical Development of Animal Density Estimation Using Random Encounter Modelling. JABES 25, 148–167 (2020). https://doi.org/10.1007/s13253-020-00385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-020-00385-4

Keywords

Navigation