Skip to main content
Log in

Hierarchical Bayesian Spatio-Temporal Conway–Maxwell Poisson Models with Dynamic Dispersion

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Modeling spatio-temporal count processes is often a challenging endeavor. That is, in many real-world applications the complexity and high-dimensionality of the data and/or process do not allow for routine model specification. For example, spatio-temporal count data often exhibit temporally varying over/underdispersion within the spatial domain. In order to accommodate such structure, while quantifying different sources of uncertainty, we propose a Bayesian spatio-temporal Conway–Maxwell Poisson (CMP) model with dynamic dispersion. Motivated by the problem of predicting migratory bird settling patterns, we propose a threshold vector-autoregressive model for the CMP intensity parameter that allows for regime switching based on climate conditions. Additionally, to reduce the inherent high-dimensionality of the underlying process, we consider nonlinear dimension reduction through kernel principal component analysis. Finally, we demonstrate the effectiveness of our approach through out-of-sample one-year-ahead prediction of waterfowl migratory patterns across the United States and Canada. The proposed approach is of independent interest and illustrates the potential benefits of dynamic dispersion in terms of superior forecasting.

This article has supplementary material online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berliner, L. (1996), “Hierarchical Bayesian Time-Series Models,” Fundamental Theories of Physics, 79, 15–22.

    MathSciNet  Google Scholar 

  • Brooks, S., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7 (4), 434–455.

    MathSciNet  Google Scholar 

  • Cameron, A., and Trivedi, P. (1998), Regression Analysis of Count Data, Vol. 30, Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Carlin, B., and Banerjee, S. (2003), “Hierarchical Multivariate CAR Models for Spatio-Temporally Correlated Survival Data,” Bayesian Statistics, 7, 45–64.

    MathSciNet  Google Scholar 

  • Conway, R., and Maxwell, W. (1962), “A Queuing Model With State Dependent Service Rates,” Journal of Industrial Engineering, 12, 2.

    Google Scholar 

  • Cressie, N., and Wikle, C. (2011), Statistics for Spatio-Temporal Data, New York: Wiley.

    MATH  Google Scholar 

  • Guikema, S., and Goffelt, J. (2008), “A Flexible Count Data Regression Model for Risk Analysis,” Risk Analysis, 28 (1), 213–223.

    Article  Google Scholar 

  • Hansen, H., and McKnight, D. (1964), “Emigration of Drought-Displaced Ducks to the Arctic,” in Transactions of the North American Wildlife and Natural Resources Conference, Vol. 29, pp. 119–127.

    Google Scholar 

  • Herbers, J. M. (1989), “Community Structure in North Temperate Ants: Temporal and Spatial Variation,” Oecologia, 81 (2), 201–211.

    Google Scholar 

  • Hilbe, J. (2011), Negative Binomial Regression, Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hooten, M., Wikle, C., Dorazio, R., and Royle, J. (2007), “Hierarchical Spatio-Temporal Matrix Models for Characterizing Invasions,” Biometrics, 63 (2), 558–567.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, D., and Grier, J. (1988), “Determinants of Breeding Distributions of Ducks,” in Wildlife Monographs, pp. 3–37.

    Google Scholar 

  • Jolliffe, I. (2010), Principal Component Analysis, Berlin: Springer.

    Google Scholar 

  • Minka, T., Shmueli, G., Kadane, J., Borle, S., and Boatwright, P. (2003), Computing with the COM-Poisson Distribution. Pittsburgh: Department of Statistics, Carnegie Mellon University.

    Google Scholar 

  • R Development Core Team (2012), R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN:3-900051-07-0

    Google Scholar 

  • Ridout, M. S., and Besbeas, P. (2004), “An Empirical Model for Underdispersed Count Data,” Statistical Modelling, 4 (1), 77–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert, C., and Casella, G. (2004), Monte Carlo Statistical Methods, Berlin: Springer.

    Book  MATH  Google Scholar 

  • Schölkopf, B., Smola, A., and Müller, K. (1998), “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Computation, 10 (5), 1299–1319.

    Article  Google Scholar 

  • Sellers, K., Borle, S., and Shmueli, G. (2012), “The COM-Poisson Model for Count Data: A Survey of Methods and Applications,” Applied Stochastic Models in Business and Industry, 28, 104–116.

    Article  MathSciNet  Google Scholar 

  • Sellers, K., and Shmueli, G. (2010), “A Flexible Regression Model for Count Data,” The Annals of Applied Statistics, 4 (2), 943–961.

    Article  MathSciNet  MATH  Google Scholar 

  • Shawe, J., and Cristianini, N. (2004), Kernel Methods for Pattern Analysis, Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Shmueli, G., Minka, T., Kadane, J., Borle, S., and Boatwright, P. (2005), “A Useful Distribution for Fitting Discrete Data: Revival of the Conway–Maxwell–Poisson Distribution,” Journal of the Royal Statistical Society. Series C. Applied Statistics, 54 (1) 127–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Sorenson, L., Goldberg, R., Root, T., and Anderson, M. (1998), “Potential Effects of Global Warming on Waterfowl Populations Breeding in the Northern Great Plains,” Climatic Change, 40 (2), 343–369.

    Article  Google Scholar 

  • Van der Maaten, L., Postma, E., and Van den Herik, H. (2008). ”Dimensionality Reduction: A Comparative Review.” Online Preprint.

  • Ver Hoef, J., and Boveng, P. (2007), “Quasi-Poisson Vs. Negative Binomial Regression: How Should We Model Overdispersed Count Data?,” Ecology, 88 (11), 2766–2772.

    Article  Google Scholar 

  • Waller, L., Carlin, B., Xia, H., and Gelfand, A. (1997), “Hierarchical Spatio-Temporal Mapping of Disease Rates,” Journal of the American Statistical Association, 92 (438), 607–617.

    Article  MATH  Google Scholar 

  • Wang, J., and Holan, S. (2012), “Bayesian Multi-Regime Smooth Transition Regression With Ordered Categorical Variables,” Computational Statistics & Data Analysis, 56 (2), 4165–4179.

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle, C. (2003), “Hierarchical Bayesian Models for Predicting the Spread of Ecological Processes,” Ecology, 84 (6), 1382–1394.

    Article  Google Scholar 

  • — (2010), Handbook of Spatial Statistics, London/Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Wikle, C., and Berliner, L. (2005), “Combining Information Across Spatial Scales,” Techonmetrics, 47, 80–91.

    Article  MathSciNet  Google Scholar 

  • Wikle, C., and Cressie, N. (1999), “A Dimension-Reduced Approach to Space-Time Kalman Filtering,” Biometrika, 86 (4), 815.

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle, C., and Holan, S. (2011), “Polynomial Nonlinear Spatio-Temporal Integro-Difference Equation Models,” Journal of Time Series Analysis, 32 (4), 339–350.

    Article  MathSciNet  Google Scholar 

  • Wikle, C., and Hooten, M. (2006), “Hierarchical Bayesian Spatio-Temporal Models for Population Spread,” in Applications of Computational Statistics in the Environmental Sciences: Hierarchical Bayes and MCMC Methods, pp. 145–169.

    Google Scholar 

  • — (2010), “A General Science-Based Framework for Dynamical Spatio-Temporal Models,” Test, 19 (3), 417–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle, C., Milliff, R., Nychka, D., and Berliner, L. (2001), “Spatio-Temporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds,” Journal of the American Statistical Association, 96 (454), 382–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuang, L., and Cressie, N. (2012), “Spatio-Temporal Modeling of Sudden Infant Death Syndrome Data,” Statistical Methodology, 9 (1), 117–143.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Wu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 314 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Holan, S.H. & Wikle, C.K. Hierarchical Bayesian Spatio-Temporal Conway–Maxwell Poisson Models with Dynamic Dispersion. JABES 18, 335–356 (2013). https://doi.org/10.1007/s13253-013-0141-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-013-0141-2

Key Words

Navigation