Skip to main content
Log in

A Bayesian Model for Presence-Only Semicontinuous Data, With Application to Prediction of Abundance of Taxus Baccata in Two Italian Regions

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

In studies about the potential distribution of ecological niches, only the presence of the species of interest is usually recorded. Pseudo-absences are sampled from the study area in order to avoid biased estimates and predictions. For cases in which, instead of the mere presence, a continuous abundance index is recorded, we derive a two-part model for semicontinuous (i.e., positive with excess zeros) data which explicitly takes into account uncertainty about the sampled zeros. Our model is a direct extension of the one of Ward et al. (Biometrics 65, 554–563, 2009). It is fit in a Bayesian framework, which has many advantages over the maximum likelihood approach of Ward et al. (2009), the most important of which is that the prevalence of the species does not need to be known in advance. We illustrate our approach with real data arising from an original study aiming at the prediction of the potential distribution of the Taxus baccata in two central Italian regions. Supplemental materials giving detailed proofs of propositions, tables and code are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attorre, F., Alfó, M., De Sanctis, M., Francesconi, F., and Bruno, F. (2007a), “Comparison of Interpolation Methods for Mapping Climatic and Bioclimatic Variables at Regional Scale,” International Journal of Climatology, 27, 1825–1843.

    Article  Google Scholar 

  • Attorre, F., Francesconi, F., Taleb, N., Scholte, P., Saed, A., Alfó, M., and Bruno, F. (2007b), “Will Dragonblood Survive the Next Period of Climate Change? Current and Future Potential Distribution of Dracaena cinnabari,” Biological Conservation, 138, 430–439.

    Article  Google Scholar 

  • Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, Berlin: Springer.

    MATH  Google Scholar 

  • Bernardo, J. M., and Smith, A. F. M. (1994), Bayesian Theory, Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Chaubert-Pereira, F., Guédon, Y., Lavergne, C., and Trottier, C. (2010), “Markov and Semi-Markov Switching Linear Mixed Models Used to Identify Forest Tree Growth Components,” Biometrics, 66, 753–762.

    Article  MATH  Google Scholar 

  • Diebolt, J., and Robert, C. (1994), “Estimation of Finite Mixture Distributions Through Bayesian Sampling,” Journal of the Royal Statistical Society. Series B, 56, 363–375.

    MathSciNet  MATH  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmermann, N. E. (2006), “Novel Methods Improve Prediction of Species’ Distribution From Occurrence Data,” Ecography, 29, 129–151.

    Article  Google Scholar 

  • Engler, R., Guisan, A., and Rechsteiner, L. (2004), “An Improved Approach for Predicting the Distribution of Rare and Endangered Species from Occurrence and Pseudo-Absence Data,” Journal of Applied Ecology, 41, 263–274.

    Article  Google Scholar 

  • Farcomeni, A. (2010), “Bayesian Constrained Variable Selection,” Statistica Sinica, 20, 1043–1062.

    MathSciNet  MATH  Google Scholar 

  • Garthwaite, P., Kadane, J., and O’Hagan, A. (2005), “Statistical Methods for Eliciting Probability Distributions,” Technical Report 808, Carnegie Mellon University.

  • Gelfand, A. E. (1996), “Model Determination Using Sampling-Based Methods,” in Markov Chain Monte Carlo in Practice, eds. W. Gilks, S. Richardson, and D. Spiegelhalter, London: Chapman & Hall, pp. 145–161.

    Google Scholar 

  • Gelfand, A. E., Dey, D. K., and Chang, H. (1992), “Model Determination Using Predictive Distributions With Implementation via Sampling-Based Methods,” Bayesian Statistics, 4, 147–167.

    MathSciNet  Google Scholar 

  • Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995), “Adaptive Rejection Metropolis Sampling Within Gibbs Sampling (corr: 97v46 p541-542 with R. M. Neal),” Applied Statistics, 44, 455–472.

    Article  MATH  Google Scholar 

  • Guisan, A., and Zimmermann, N. E. (2000), “Predictive Habitat Distribution Models in Ecology,” Ecological Modelling, 135, 147–186.

    Article  Google Scholar 

  • Hastie, T., and Tibshirani, R. J. (1990), Generalized Additive Models, London: Chapman & Hall.

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning, New York: Springer.

    MATH  Google Scholar 

  • Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999), “Bayesian Model Averaging: A Tutorial,” Statistical Science, 14, 382–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Kadane, J., Dickey, J., Winkler, R., Smith, W., and Peters, S. (1980), “Interactive Elicitation of Opinion for a Normal Linear Model,” Journal of the American Statistical Association, 75, 845–854.

    Article  MathSciNet  Google Scholar 

  • Kadane, J. B., and Wolfson, L. (1998), “Experiences in Elicitation,” The Statistician, 47, 3–19.

    Google Scholar 

  • Keating, K. A., and Cherry, S. (2004), “Use and Interpretation of Logistic Regression in Habitat-Selection Studies,” Journal of Wildlife Management, 68, 774–789.

    Article  Google Scholar 

  • Lachenbruch, P. (2002), “Analysis of Data With Excess Zeros,” Statistical Methods in Medical Research, 11, 297–302.

    Article  MATH  Google Scholar 

  • Leathwick, J., Moilanen, A., Francis, M., Elith, J., Taylor, P., Julian, K., Hastie, T., and Duffy, C. (2008), “Novel Methods for the Design and Evaluation of Marine Protected Areas in Offshore Waters,” Conservation Letters, 1, 91–102.

    Article  Google Scholar 

  • Li, N., Elashoff, D. A., Robbinsons, W. A., and Xun, L. A. (2008), “A Hierarchical Zero-Inflated Log-Normal Model for Skewed Responses,” Statistical Methods in Medical Research, doi:10.1177/0962280208097372.

  • McCullagh, P., and Nelder, J. A. (1989), Generalized Linear Models, London: Chapman & Hall, CRC.

    MATH  Google Scholar 

  • Pearce, J. L., and Boyce, M. S. (2006), “Modelling Distribution and Abundance with Presence-Only,” Journal of Applied Ecology, 43, 405–412.

    Article  Google Scholar 

  • Phillips, S., Anderson, R., and Schapire, R. (2006), “Maximum Entropy Modeling of Species Geographic Distributions,” Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Prasad, A. M., Iverson, L. R., and Liaw, A. (2006), “Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction,” Ecosystems, 9, 181–199.

    Article  Google Scholar 

  • R Development Core Team (2009), R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Scarnati, L., Attorre, F., De Sanctis, M., Farcomeni, A., Francesconi, F., Mancini, M., and Bruno, F. (2009a), “A Multiple Approach for the Evaluation of the Spatial Distribution and Dynamics of a Forest Habitat: The Case of Apennine Beech Forests With Taxus baccata and Ilex aquifolium,” Biodiversity and Conservation, 18, 3099–3113.

    Article  Google Scholar 

  • Scarnati, L., Attorre, F., Farcomeni, A., Francesconi, F., and De Santis, M. (2009b), “Modelling the Spatial Distribution of Tree Species With Fragmented Populations from Abundance Data,” Community Ecology, 10, 215–224.

    Article  Google Scholar 

  • Tanner, M. A. (1996), Tools for Statistical Inference, New York: Springer.

    MATH  Google Scholar 

  • Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, A. (2009), “Presence-Only Data and the EM Algorithm,” Biometrics, 65, 554–563.

    Article  MathSciNet  MATH  Google Scholar 

  • Zaniewski, A. E., Lehmann, A., and Overton, J. (2002), “Predicting Species Spatial Distribution Using Presence-Only Data, a Case Study of Native New Zealand Ferns,” Ecological Modelling, 157, 261–280.

    Article  Google Scholar 

  • Zhou, X., and Tu, W. (1999), “Comparison of Several Different Population Means When Their Samples Contain Log-Normal and Possibly Zero Observations,” Biometrics, 55, 645–651.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Golini.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(80.5 KB)

(23.7 KB)

(2 KB)

(7 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Lorenzo, B., Farcomeni, A. & Golini, N. A Bayesian Model for Presence-Only Semicontinuous Data, With Application to Prediction of Abundance of Taxus Baccata in Two Italian Regions. JABES 16, 339–356 (2011). https://doi.org/10.1007/s13253-011-0054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-011-0054-x

Key Words

Navigation