Skip to main content
Log in

Full Open Population Capture–Recapture Models With Individual Covariates

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Traditional analyses of capture–recapture data are based on likelihood functions that explicitly integrate out all missing data. We use a complete data likelihood (CDL) to show how a wide range of capture–recapture models can be easily fitted using readily available software JAGS/BUGS even when there are individual-specific time-varying covariates. The models we describe extend those that condition on first capture to include abundance parameters, or parameters related to abundance, such as population size, birth rates or lifetime. The use of a CDL means that any missing data, including uncertain individual covariates, can be included in models without the need for customized likelihood functions. This approach also facilitates modeling processes of demographic interest rather than the complexities caused by non-ignorable missing data. We illustrate using two examples, (i) open population modeling in the presence of a censored time-varying individual covariate in a full robust design, and (ii) full open population multi-state modeling in the presence of a partially observed categorical variable. Supplemental materials for this article are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, R. J. (1999), “Joint Analysis of Mark–Recapture, Resighting and Ring-Recovery Data With Age-Dependence and Marking-Effect,” Bird Study, 46(suppl), 82–91.

    Article  Google Scholar 

  • Barker, R. J., and Link, W. A. (2010), “Posterior Model Probabilities Computed From Model-Specific Gibbs Output,” arXiv:1012.0073v1.

  • Bonner, S. J., and Schwarz, C. J. (2006), “An Extension of the Cormack–Jolly–Seber Model for Continuous Covariates With Application to Microtus pennsylvanicus,” Biometrics, 62, 142–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonner, S. J., Morgan, B. J. T., and King, R. (2010), “Continuous Covariates in Mark–Recapture–Recovery Analysis: A Comparison of Methods,” Biometrics, 66, 1256–1265.

    Article  MATH  Google Scholar 

  • Brooks, S. P., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7 (4), 434–455.

    Article  MathSciNet  Google Scholar 

  • Brooks, S. P., Catchpole, E. A., and Morgan, B. J. T. (2000), “Bayesian Animal Survival Estimation,” Statistical Science, 15 (4), 357–376.

    Article  MathSciNet  Google Scholar 

  • Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C., and Pollock, K. H. (1987), “Design and Analysis Methods for Fish Survival Experiments Based on Release–Recapture,” American Fisheries Society Monograph, 5, 1–437.

    Google Scholar 

  • Catchpole, E. A., Morgan, B. J. T., and Tavecchia, G. (2008), “A New Method for Analysing Discrete Life History Data With Missing Covariate Values,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70 (2), 445–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Conn, P. B., and Cooch, E. G. (2009), “Multistate Capture–Recapture Analysis Under Imperfect State Observation: An Application to Disease Models,” Journal of Applied Ecology, 46 (2), 486–492.

    Article  Google Scholar 

  • Dupuis, J. A. (1995), “Bayesian Estimation of Movement and Survival Probabilities From Capture–Recapture Data,” Biometrika, 82 (4), 761–772.

    MathSciNet  MATH  Google Scholar 

  • Dupuis, J. A., and Schwarz, C. J. (2007), “A Bayesian Approach to the Multistate Jolly–Seber Capture–Recapture Model,” Biometrics, 63 (4), 1015–1022.

    MathSciNet  MATH  Google Scholar 

  • Durban, J. W., and Elston, D. A. (2005), “Mark–Recapture With Occasion and Individual Effects: Abundance Estimation Through Bayesian Model Selection in a Fixed Dimensional Parameter Space,” Journal of Agricultural, Biological, and Environmental Statistics, 10, 291–305.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data Analysis (2nd ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Gimenez, O., Bonner, S. J., King, R., Parker, R. A., Brooks, S. P., Jamieson, L. E., Grosbois, V., Morgan, B. J. T., and Thomas, L. (2009), “WinBUGS for Population Ecologists: Bayesian Modeling Using Markov Chain Monte Carlo Methods,” in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Vol. 3, eds. D. L. Thomson, E. G. Cooch, and M. J. Conroy, Berlin: Springer, pp. 885–918.

    Google Scholar 

  • Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learning (2nd ed.), Berlin: Springer.

    Book  MATH  Google Scholar 

  • Huggins, R. M. (1989), “On the Statistical Analysis of Capture Experiments,” Biometrika, 76 (1), 133–140.

    Article  MathSciNet  MATH  Google Scholar 

  • King, R., and Brooks, S. P. (2002), “Bayesian Model Discrimination for Multiple Strata Capture–Recapture Data,” Biometrika, 89, 785–806.

    Article  MathSciNet  MATH  Google Scholar 

  • — (2008), “On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty,” Biometrics, 64 (3), 816–824.

    Article  MathSciNet  MATH  Google Scholar 

  • King, R., Brooks, S. P., and Coulson, T. (2008), “Analyzing Complex Capture–Recapture Data in the Presence of Individual and Temporal Covariates and Model Uncertainty,” Biometrics, 64 (4), 1187–1195.

    Article  MathSciNet  MATH  Google Scholar 

  • King, R., Morgan, B. J. T., Gimenez, O., and Brooks, S. P. (2010), Bayesian Analysis for Population Ecology, Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Lebreton, J. D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992), “Modelling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies,” Ecological Monographs, 62 (1), 67–118.

    Article  Google Scholar 

  • Link, W. A., and Barker, R. J. (2005), “Modeling Association Among Demographic Parameters in Analysis of Open Population Capture–Recapture Data,” Biometrics, 61, 46–54.

    Article  MathSciNet  MATH  Google Scholar 

  • — (2006), “Model Weights and the Foundations of Multimodel Inference,” Ecology, 87, 2626–2635.

    Article  Google Scholar 

  • — (2010), Bayesian Inference With Ecological Applications, New York: Academic Press.

    Google Scholar 

  • Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “WinBUGS—A Bayesian Modelling Framework: Concepts, Structure, and Extensibility,” Statistics and Computing, 10, 325–337.

    Article  Google Scholar 

  • McDonald, T. L., and Amstrup, S. C. (2001), “Estimation of Population Size Using Open Capture–Recapture Models,” Journal of Agricultural, Biological, and Environmental Statistics, 206–220.

  • Nichols, J. D., Sauer, J. R., Pollock, K. H., and Hestbeck, J. B. (1992), “Estimating Transition Probabilities for Stage-Based Population Projection Matrices Using Capture–Recapture Data,” Ecology, 73 (1), 306–312.

    Article  Google Scholar 

  • Nichols, J. D., Kendall, W. L., Hines, J. E., and Spendelow, J. A. (2004), “Estimation of Sex-Specific Survival from Capture–Recapture Data When Sex in Not Always Known,” Ecology, 85, 3192–3201.

    Article  Google Scholar 

  • Plummer, M. (2003), “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling,” in Proceedings of the 3rd International Workshop on Distributed Statistical Computing, March, pp. 20–22.

    Google Scholar 

  • Pollock, K. H. (1982), “A Capture–Recapture Design Robust to Unequal Probability of Capture,” Journal of Wildlife Management, 46 (3), 752–757.

    Article  MathSciNet  Google Scholar 

  • Pollock, K. H., Hines, J. E., and Nichols, J. D. (1985), “Goodness-of-Fit Tests for Open Capture–Recapture Models,” Biometrics, 41, 399–410.

    Article  MATH  Google Scholar 

  • Pradel, R. (1996), “Utilization of Capture–Mark–Recapture for the Study of Recruitment and Population Growth Rate,” Biometrics, 52 (2), 703–709.

    Article  MathSciNet  MATH  Google Scholar 

  • Pradel, R., Wintrebert, C., and Gimenez, O. (2003), “A Proposal for a Goodness-of-Fit Test to the Arnason–Schwarz Multisite Capture–Recapture Model,” Biometrics, 59, 43–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Royle, J. A. (2009), “Analysis of Capture–Recapture Models With Individual Covariates Using Data Augmentation,” Biometrics, 65 (1), 267–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Royle, J. A., and Dorazio, R. M. (2008), Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities, New York: Academic Press.

    Google Scholar 

  • Royle, J. A., Dorazio, R. M., and Link, W. A. (2007), “Analysis of Multinomial Models with Unknown Index Using Data Augmentation,” Journal of Computational and Graphical Statistics, 16, 67–85.

    Article  MathSciNet  Google Scholar 

  • Rubin, D. B. (1976), “Inference and Missing Data,” Biometrika, 63 (3), 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  • Schofield, M. R. (2007), “Hierarchical Capture–Recapture Models,” Ph.D. thesis, University of Otago.

  • Schofield, M. R., and Barker, R. J. (2008), “A Unified Capture–Recapture Framework,” Journal of Agricultural, Biological and Environmental Statistics, 13, 458–477.

    Article  MathSciNet  Google Scholar 

  • — (2009), “A Further Step Toward the Mother-of-All-Models: Flexibility and Functionality in the Modeling of Capture–Recapture Data,” in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Vol. 3, eds. D. L. Thomson, E. G. Cooch, and M. J. Conroy, Berlin: Springer, pp. 677–689.

    Chapter  Google Scholar 

  • Schofield, M. R., Barker, R. J., and MacKenzie, D. I. (2009), “Flexible Hierarchical Mark–Recapture Modeling for Open Populations Using WinBUGS,” Environmental and Ecological Statistics, 16, 369–387.

    Article  MathSciNet  Google Scholar 

  • Schwarz, C. J., and Arnason, A. N. (1996), “A General Methodology for the Analysis of Capture–Recapture Experiments in Open Populations,” Biometrics, 52 (3), 860–873.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, C. J., Schweigert, J. F., and Arnason, A. N. (1993), “Estimating Migration Rates Using Tag-Recovery Data,” Biometrics, 49, 177–193.

    Article  Google Scholar 

  • Su, Y.-S., and Yajima, M. (2009), R2jags: A Package for Running JAGS From R. R package version 0.01-26.

  • Tanner, M. A., and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation” (with discussion), Journal of the American Statistical Association, 82, 529–550.

    MathSciNet  Google Scholar 

  • Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002), Analysis and Management of Animal Populations, New York: Academic Press.

    Google Scholar 

  • Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E., and Gleeson, D. M. (2009), “Incorporating Genotype Uncertainty Into Mark–Recapture-Type Models for Estimating Abundance Using DNA Samples,” Biometrics, 65(9999), 833–840. doi:10.1111/j.1541-0420.2008.01165.x.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Schofield.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 75.1 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schofield, M.R., Barker, R.J. Full Open Population Capture–Recapture Models With Individual Covariates. JABES 16, 253–268 (2011). https://doi.org/10.1007/s13253-010-0052-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-010-0052-4

Key Words

Navigation