Skip to main content

Advertisement

Log in

Biomechanical Impact of Wrong Positioning of a Dedicated Stent for Coronary Bifurcations: A Virtual Bench Testing Study

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The treatment of coronary bifurcations is challenging for interventional cardiologists. The Tryton stent (Tryton Medical, Inc., USA) is one of the few devices specifically designed for coronary bifurcations that underwent large clinical trials. Although the manufacturer provides specific recommendations to position the stent in the bifurcation side branch (SB) according to four radio-opaque markers under angiographic guidance, wrong device positioning may accidentally occur. In this study, the virtual bench testing approach was used to investigate the impact of wrong positioning of the Tryton stent in coronary bifurcations in terms of geometrical and biomechanical criteria. A finite element model of the left anterior descending/first diagonal coronary bifurcation was created with a 45° distal angle and realistic lumen diameters. A validated model of the Tryton stent mounted on stepped delivery balloon was used. All steps of the Tryton deployment sequence were simulated. Three Tryton positions, namely ‘proximal’, ‘recommended’, and ‘distal’ positions, obtained by progressively implanting the stent more distally in the SB, were compared. The ‘recommended’ case exhibited the lowest ostial area stenosis (44.8 vs. 74.3% (‘proximal’) and 51.5% (‘distal’)), the highest diameter at the SB ostium (2.81 vs. 2.70 mm (‘proximal’) and 2.54 mm (‘distal’)), low stent malapposition (9.9 vs. 16.3% (‘proximal’) and 8.5% (‘distal’)), and the lowest peak wall stress (0.37 vs. 2.20 MPa (‘proximal’) and 0.71 MPa (‘distal’)). In conclusion, the study shows that a ‘recommended’ Tryton stent positioning may be required for optimal clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Antoniadis, A. P., P. Mortier, G. Kassab, G. Dubini, N. Foin, Y. Murasato, A. A. Giannopoulos, S. Tu, K. Iwasaki, Y. Hikichi, F. Migliavacca, C. Chiastra, J. J. Wentzel, F. Gijsen, J. H. C. Reiber, P. Barlis, P. W. Serruys, D. L. Bhatt, G. Stankovic, E. R. Edelman, G. D. Giannoglou, Y. Louvard, and Y. S. Chatzizisis. Biomechanical modeling to improve coronary artery bifurcation stenting: expert review document on techniques and clinical implementation. JACC Cardiovasc. Interv. 8:1281–1296, 2015.

    Article  Google Scholar 

  2. Capelli, C., F. Gervaso, L. Petrini, G. Dubini, and F. Migliavacca. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009.

    Article  Google Scholar 

  3. Chiastra, C., M. J. Grundeken, W. Wu, P. W. Serruys, R. J. de Winter, G. Dubini, J. J. Wykrzykowska, and F. Migliavacca. First report on free expansion simulations of a dedicated bifurcation stent mounted on a stepped balloon. EuroIntervention 10:e1–e3, 2015.

    Article  Google Scholar 

  4. Chiastra, C., W. Wu, B. Dickerhoff, A. Aleiou, G. Dubini, H. Otake, F. Migliavacca, and J. F. LaDisa. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: from OCT and CT imaging to structural and hemodynamics analyses. J. Biomech. 49:2102–2111, 2016.

    Article  Google Scholar 

  5. Collet, C., Y. Onuma, R. Cavalcante, M. Grundeken, P. Généreux, J. Popma, R. Costa, G. Stankovic, S. Tu, J. Reiber, J.-P. Aben, J. Lassen, Y. Louvard, A. Lansky, and P. Serruys. Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European Bifurcation Club. EuroIntervention 13:115–123, 2017.

    Article  Google Scholar 

  6. Costa, R. A., G. S. Mintz, S. G. Carlier, A. J. Lansky, I. Moussa, K. Fujii, H. Takebayashi, T. Yasuda, J. R. Costa, Jr, Y. Tsuchiya, L. O. Jensen, E. Cristea, R. Mehran, G. D. Dangas, S. Iyer, M. Collins, E. M. Kreps, A. Colombo, G. W. Stone, M. B. Leon, and J. W. Moses. Bifurcation coronary lesions treated with the “crush” technique: an intravascular ultrasound analysis. J. Am. Coll. Cardiol. 46:599–605, 2005.

    Article  Google Scholar 

  7. Derimay, F., G. Souteyrand, P. Motreff, G. Rioufol, and G. Finet. Influence of platform design of six different drug-eluting stents in provisional coronary bifurcation stenting by rePOT sequence: a comparative bench analysis. EuroIntervention 13:e1092–e1095, 2017.

    Article  Google Scholar 

  8. Finet, G., M. Gilard, B. Perrenot, G. Rioufol, P. Motreff, L. Gavit, and R. Prost. Fractal geometry of arterial coronary bifurcations: a quantitative coronary angiography and intravascular ultrasound analysis. EuroIntervention 3:490–498, 2007.

    Article  Google Scholar 

  9. Foin, N., J. L. Gutiérrez-Chico, S. Nakatani, R. Torii, C. V. Bourantas, S. Sen, S. Nijjer, R. Petraco, C. Kousera, M. Ghione, Y. Onuma, H. M. Garcia-Garcia, D. P. Francis, P. Wong, C. Di Mario, J. E. Davies, and P. W. Serruys. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance implications for the management of incomplete stent apposition. Circ. Cardiovasc. Interv. 7:180–189, 2014.

    Article  Google Scholar 

  10. Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, and F. Migliavacca. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010.

    Article  Google Scholar 

  11. Généreux, P., A. Kini, M. Lesiak, I. Kumsars, G. Fontos, T. Slagboom, I. Ungi, D. C. Metzger, J. J. Wykrzykowska, P. R. Stella, A. L. Bartorelli, W. F. Fearon, T. Lefèvre, R. L. Feldman, G. Tarantini, N. Bettinger, G. Minalu-Ayele, L. LaSalle, D. P. Francese, Y. Onuma, M. J. Grundeken, H. M. Garcia-Garcia, L. L. Laak, D. E. Cutlip, A. V. Kaplan, P. W. Serruys, and M. B. Leon. Outcomes of a dedicated stent in coronary bifurcations with large side branches: a subanalysis of the randomized TRYTON bifurcation study. Catheter. Cardiovasc. Interv. 87:1231–1241, 2016.

    Article  Google Scholar 

  12. Généreux, P., I. Kumsars, M. Lesiak, A. Kini, G. Fontos, T. Slagboom, I. Ungi, D. C. Metzger, J. J. Wykrzykowska, P. R. Stella, A. L. Bartorelli, W. F. Fearon, T. Lefèvre, R. L. Feldman, L. LaSalle, D. P. Francese, Y. Onuma, M. J. Grundeken, H. M. Garcia-Garcia, L. L. Laak, D. E. Cutlip, A. V. Kaplan, P. W. Serruys, and M. B. Leon. A randomized trial of a dedicated bifurcation stent versus provisional stenting in the treatment of coronary bifurcation lesions. J. Am. Coll. Cardiol. 65:533–543, 2015.

    Article  Google Scholar 

  13. Généreux, P., I. Kumsars, J. E. Schneider, M. Lesiak, B. Redfors, K. Cornelis, M. R. Selmon, J. Dens, A. Hoye, D. C. Metzger, L. Muyldermans, T. Slagboom, D. P. Francese, G. M. Ayele, L. L. Laak, A. L. Bartorelli, D. E. Cutlip, A. V. Kaplan, and M. B. Leon. Dedicated bifurcation stent for the treatment of bifurcation lesions involving large side branches: outcomes from the Tryton confirmatory study. JACC. Cardiovasc. Interv. 9:1338–1346, 2016.

    Article  Google Scholar 

  14. Grundeken, M. J., C. Chiastra, W. Wu, J. J. Wykrzykowska, R. J. De Winter, G. Dubini, and F. Migliavacca. Differences in rotational positioning and subsequent distal main branch rewiring of the Tryton stent: an optical coherence tomography and computational study. Catheter. Cardiovasc. Interv. 2018. https://doi.org/10.1002/ccd.27567.

    Google Scholar 

  15. Grundeken, M. J., R. J. de Winter, and J. J. Wykrzykowska. Safety and efficacy of the Tryton Side Branch Stent™ for the treatment of coronary bifurcation lesions: an update. Expert Rev. Med. Devices 14:545–555, 2017.

    Article  Google Scholar 

  16. Grundeken, M. J., P. Généreux, J. J. Wykrzykowska, M. B. Leon, and P. W. Serruys. The Tryton Side Branch Stent. EuroIntervention 11(Suppl V):V145–V146, 2015.

    Article  Google Scholar 

  17. Grundeken, M. J., Y. Ishibashi, P. Généreux, L. LaSalle, J. Iqbal, J. J. Wykrzykowska, M.-A. Morel, J. G. Tijssen, R. J. de Winter, C. Girasis, H. M. Garcia-Garcia, Y. Onuma, M. B. Leon, and P. W. Serruys. Inter-core lab variability in analyzing quantitative coronary angiography for bifurcation lesions: a post hoc analysis of a randomized trial. JACC Cardiovasc. Interv. 8:305–314, 2015.

    Article  Google Scholar 

  18. Grundeken, M. J., P. R. Stella, and J. J. Wykrzykowska. The Tryton Side Branch Stent™ for the treatment of coronary bifurcation lesions. Expert Rev. Med. Devices 10:707–716, 2013.

    Article  Google Scholar 

  19. Hariki, H., T. Shinke, H. Otake, J. Shite, M. Nakagawa, T. Inoue, T. Osue, M. Iwasaki, Y. Taniguchi, R. Nishio, N. Hiranuma, H. Kinutani, A. Konishi, and K. Hirata. Potential benefit of final kissing balloon inflation after single stenting for the treatment of bifurcation lesions. Circ. J. 77:1193–1201, 2013.

    Article  Google Scholar 

  20. Holzapfel, G., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  Google Scholar 

  21. Iannaccone, F., C. Chiastra, A. Karanasos, F. Migliavacca, F. J. H. Gijsen, P. Segers, P. Mortier, B. Verhegghe, G. Dubini, M. De Beule, E. Regar, and J. J. Wentzel. Impact of plaque type and side branch geometry on side branch compromise after provisional stent implantation: a simulation study. EuroIntervention 13:e236–e245, 2017.

    Article  Google Scholar 

  22. Lassen, J. F., F. Burzotta, A. P. Banning, T. Lefèvre, O. Darremont, D. Hildick-Smith, A. Chieffo, M. Pan, N. R. Holm, Y. Louvard, and G. Stankovic. Percutaneous coronary intervention for the Left Main stem and other bifurcation lesions. The 12th consensus document from the European Bifurcation Club. EuroIntervention 13:1540–1553, 2017.

    Article  Google Scholar 

  23. Lassen, J. F., N. R. Holm, A. Banning, F. Burzotta, T. Lefèvre, A. Chieffo, D. Hildick-Smith, Y. Louvard, and G. Stankovic. Percutaneous coronary intervention for coronary bifurcation disease: 11th consensus document from the European Bifurcation Club. EuroIntervention 12:38–46, 2016.

    Article  Google Scholar 

  24. Medrano-Gracia, P., J. Ormiston, M. Webster, S. Beier, A. Young, C. Ellis, C. Wang, Ö. Smedby, and B. Cowan. A computational atlas of normal coronary artery anatomy. EuroIntervention 12:845–854, 2016.

    Article  Google Scholar 

  25. Migliavacca, F., C. Chiastra, Y. S. Chatzizisis, and G. Dubini. Virtual bench testing to study coronary bifurcation stenting. EuroIntervention 11(Suppl V):V31–V34, 2015.

    Article  Google Scholar 

  26. Morlacchi, S., C. Chiastra, E. Cutrì, P. Zunino, F. Burzotta, L. Formaggia, G. Dubini, and F. Migliavacca. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 9:1441–1453, 2014.

    Article  Google Scholar 

  27. Morlacchi, S., C. Chiastra, D. Gastaldi, P. Giancarlo, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133:121010, 2011.

    Article  Google Scholar 

  28. Morlacchi, S., S. G. Colleoni, R. Cárdenes, C. Chiastra, J. L. Diez, I. Larrabide, and F. Migliavacca. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013.

    Article  Google Scholar 

  29. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.

    Article  Google Scholar 

  30. Ng, J., C. V. Bourantas, R. Torii, H. Y. Ang, E. Tenekecioglu, P. W. Serruys, and N. Foin. Local hemodynamic forces after stenting: implications on restenosis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 37:2231–2242, 2017.

    Article  Google Scholar 

  31. Ormiston, J. A., G. Kassab, G. Finet, Y. S. Chatzizisis, N. Foin, T. J. Mickley, C. Chiastra, Y. Murasato, Y. Hikichi, J. J. Wentzel, O. Darremont, K. Iwasaki, T. Lefèvre, Y. Louvard, S. Beier, H. Hojeibane, A. Netravali, J. Wooton, B. Cowan, M. W. Webster, P. Medrano-Gracia, and G. Stankovic. Bench testing and coronary artery bifurcations: a consensus document from the European Bifurcation Club. EuroIntervention 13:e1794–e1803, 2018.

    Article  Google Scholar 

  32. Ormiston, J. A., M. W. I. Webster, B. Webber, J. T. Stewart, P. N. Ruygrok, and R. I. Hatrick. The “crush” technique for coronary artery bifurcation stenting: insights from micro-computed tomographic imaging of bench deployments. JACC Cardiovasc. Interv. 1:351–357, 2008.

    Article  Google Scholar 

  33. Ragkousis, G. E., N. Curzen, and N. W. Bressloff. Simulation of longitudinal stent deformation in a patient-specific coronary artery. Med. Eng. Phys. 36:467–476, 2014.

    Article  Google Scholar 

  34. Schiavone, A., and L. G. Zhao. A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment. Mech. Adv. Mater. Mod. Process. 1:1, 2015.

    Article  Google Scholar 

  35. Scott, N. A. Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv. Drug Deliv. Rev. 58:358–376, 2006.

    Article  Google Scholar 

  36. Torii, R., E. Tenekecioglu, C. Bourantas, E. Poon, V. Thondapu, F. Gijsen, Y. Sotomi, Y. Onuma, P. Barlis, A. S. H. Ooi, and P. W. Serruys. Five-year follow-up of underexpanded and overexpanded bioresorbable scaffolds: self-correction and impact on shear stress. EuroIntervention 12:2158–2159, 2017.

    Article  Google Scholar 

  37. Tyczynski, P., G. Ferrante, N. Kukreja, C. Moreno-Ambroj, P. Barlis, N. Ramasami, R. De Silva, K. Beatt, and C. Di Mario. Optical coherence tomography assessment of a new dedicated bifurcation stent. EuroIntervention 5:544–551, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

None.

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The clinical images reported in Fig. 1 were obtained during daily clinical routine (after the Tryton stent has received CE mark). The images used in Fig. 1 were retrieved from existing clinical database. Patients were not subject to additional (imaging) procedures other than clinical routine and thus written informed consent was not obtained. This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Chiastra.

Additional information

Associate Editors James E. Moore, Jr. and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiastra, C., Grundeken, M.J., Collet, C. et al. Biomechanical Impact of Wrong Positioning of a Dedicated Stent for Coronary Bifurcations: A Virtual Bench Testing Study. Cardiovasc Eng Tech 9, 415–426 (2018). https://doi.org/10.1007/s13239-018-0359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0359-9

Keywords

Navigation