Skip to main content
Log in

Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The risk of right ventricle (RV) failure remains a major contraindication for continuous-flow left ventricular assist device (CF-LVAD) implantation in patients with heart failure. It is therefore critical to identify the patients who will benefit from early intervention to avoid adverse outcomes. We sought to advance the computational modeling description of the mechanisms underlying RV failure in LVAD-supported patients. RV failure was studied by computational modeling of hemodynamic and cardiac mechanics using lumped-parameter and biventricular finite element (FE) analysis. Findings were validated by comparison of bi-dimensional speckle-tracking echocardiographic strain assessment of the RV free wall vs. patient-specific computational strain estimations, and by non-invasive lumped-based hemodynamic predictions vs. invasive right heart catheterization data. Correlation analysis revealed that lumped-derived RV cardiac output (R = 0.94) and RV stroke work index (R = 0.85) were in good agreement with catheterization data collected from 7 patients with CF-LVAD. Biventricular FE analysis showed abnormal motion of the interventricular septum towards the left ventricular free wall, suggesting impaired right heart mechanics. Good agreement between computationally predicted and echocardiographic measured longitudinal strains was found at basal (− 19.1 ± 3.0% for ECHO, and − 16.4 ± 3.2% for FEM), apical (− 20.0 ± 3.7% for ECHO, and − 17.4 ± 2.7% for FEM), and mid-level of the RV free wall (− 20.1 ± 5.9% for echo, and − 18.0 ± 5.4% for FEM). Simulation approach here presented could serve as a tool for less invasive and early diagnosis of the severity of RV failure in patients with LVAD, although future studies are needed to validate our findings against clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Argiriou, M., S. M. Kolokotron, T. Sakellaridis, O. Argiriou, C. Charitos, P. Zarogoulidis, et al. Right heart failure post left ventricular assist device implantation. J. Thorac. Dis. 6(1):S52–S59, 2014. https://doi.org/10.3978/j.issn.2072-1439.2013.10.26.

    Article  Google Scholar 

  2. Atluri, P., A. B. Goldstone, A. S. Fairman, J. W. MacArthur, Y. Shudo, J. E. Cohen, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann. Thorac. Surg. 96(3):857–863, 2013. https://doi.org/10.1016/j.athoracsur.2013.03.099; (discussion 63-4).

    Article  Google Scholar 

  3. Bonnemain, J., A. C. Malossi, M. Lesinigo, S. Deparis, A. Quarteroni, and L. K. von Segesser. Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations. Med. Eng. Phys. 35(10):1465–1475, 2013. https://doi.org/10.1016/j.medengphy.2013.03.022.

    Article  Google Scholar 

  4. Callan, P., and A. L. Clark. Right heart catheterisation: indications and interpretation. Heart 102(2):147–157, 2016. https://doi.org/10.1136/heartjnl-2015-307786.

    Article  Google Scholar 

  5. Carrick, R., L. Ge, L. C. Lee, Z. Zhang, R. Mishra, L. Axel, et al. Patient-specific finite element-based analysis of ventricular myofiber stress after Coapsys: importance of residual stress. Ann. Thorac. Surg. 93(6):1964–1971, 2012. https://doi.org/10.1016/j.athoracsur.2012.03.001.

    Article  Google Scholar 

  6. Craig, M. L. Management of right ventricular failure in the era of ventricular assist device therapy. Curr. Heart Fail. Rep. 8(1):65–71, 2011. https://doi.org/10.1007/s11897-010-0043-3.

    Article  MathSciNet  Google Scholar 

  7. Cruz, K., and C. Franklin. The pulmonary artery catheter: uses and controversies. Crit. Care Clin. 17(2):271–291, 2001.

    Article  Google Scholar 

  8. Cutri, E., M. Serrani, P. Bagnoli, R. Fumero, and M. L. Costantino. The cardiac torsion as a sensitive index of heart pathology: a model study. J. Mech. Behav. Biomed. Mater. 55:104–119, 2015. https://doi.org/10.1016/j.jmbbm.2015.10.009.

    Article  Google Scholar 

  9. Di Molfetta, A., G. Ferrari, R. Iacobelli, S. Filippelli, L. Fresiello, P. Guccione, et al. Application of a lumped parameter model to study the feasibility of simultaneous implantation of a continuous flow ventricular assist device (VAD) and a pulsatile flow VAD in BIVAD patients. Artif Organs. 41(3):242–252, 2017. https://doi.org/10.1111/aor.12911.

    Article  Google Scholar 

  10. Ferrari, G., A. Di Molfetta, K. Zielinski, L. Fresiello, K. Gorczynska, K. J. Palko, et al. Control of a pediatric pulsatile ventricular assist device: a hybrid cardiovascular model study. Artif. Organs. 2017. https://doi.org/10.1111/aor.12929.

    Article  Google Scholar 

  11. Fitzpatrick, 3rd, J. R., J. R. Frederick, W. Hiesinger, V. M. Hsu, R. C. McCormick, E. D. Kozin, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J. Thorac. Cardiovasc. Surg. 137(4):971–977, 2009. https://doi.org/10.1016/j.jtcvs.2008.09.021.

    Article  Google Scholar 

  12. Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33(3):263–280, 2011. https://doi.org/10.1016/j.medengphy.2010.10.014.

    Article  Google Scholar 

  13. Genet, M., L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. H. Zhang, et al. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117(2):142–152, 2014. https://doi.org/10.1152/japplphysiol.00255.2014.

    Article  Google Scholar 

  14. Guccione, J. M., A. Salahieh, S. M. Moonly, J. Kortsmit, A. W. Wallace, and M. B. Ratcliffe. Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study. Ann. Thorac. Surg. 76(4):1171–1180, 2003; (discussion 80).

    Article  Google Scholar 

  15. Heidenreich, P. A., N. M. Albert, L. A. Allen, D. A. Bluemke, J. Butler, G. C. Fonarow, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6(3):606–619, 2013. https://doi.org/10.1161/HHF.0b013e318291329a.

    Article  Google Scholar 

  16. Holzapfel, G. A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2009(367):3445–3475, 1902. https://doi.org/10.1098/rsta.2009.0091.

    Article  MATH  Google Scholar 

  17. Kerckhoffs, R. C., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35(1):1–18, 2007. https://doi.org/10.1007/s10439-006-9212-7.

    Article  Google Scholar 

  18. Kirklin, J. K., F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J. Heart Lung Transplant. 36(10):1080–1086, 2017. https://doi.org/10.1016/j.healun.2017.07.005.

    Article  Google Scholar 

  19. Kormos, R. L., J. J. Teuteberg, F. D. Pagani, S. D. Russell, R. John, L. W. Miller, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc Surg. 139(5):1316–1324, 2010. https://doi.org/10.1016/j.jtcvs.2009.11.020.

    Article  Google Scholar 

  20. Lee, L. C., M. Genet, A. B. Dang, L. Ge, J. M. Guccione, and M. B. Ratcliffe. Applications of computational modeling in cardiac surgery. J. Card. Surg. 29(3):293–302, 2014. https://doi.org/10.1111/jocs.12332.

    Article  Google Scholar 

  21. Lumens, J., T. Arts, B. Broers, K. A. Boomars, P. van Paassen, F. W. Prinzen, et al. Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis. Am. J. Physiol. Heart Circ. Physiol. 297(6):H2196–H2205, 2009. https://doi.org/10.1152/ajpheart.00870.2009.

    Article  Google Scholar 

  22. Lumens, J., and T. Delhaas. Cardiovascular modeling in pulmonary arterial hypertension: focus on mechanisms and treatment of right heart failure using the CircAdapt model. Am. J. Cardiol. 110(6l):39S–48S, 2012. https://doi.org/10.1016/j.amjcard.2012.06.015.

    Article  Google Scholar 

  23. Matthews, J. C., T. M. Koelling, F. D. Pagani, and K. D. Aaronson. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J. Am. Coll. Cardiol. 51(22):2163–2172, 2008. https://doi.org/10.1016/j.jacc.2008.03.009.

    Article  Google Scholar 

  24. McMurray, J. J., S. Adamopoulos, S. D. Anker, A. Auricchio, M. Bohm, K. Dickstein, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 14(8):803–869, 2012. https://doi.org/10.1093/eurjhf/hfs105.

    Article  Google Scholar 

  25. Pearlman, A. S., C. E. Clark, W. L. Henry, J. Morganroth, S. B. Itscoitz, and S. E. Epstein. Determinants of ventricular septal motion. Influence of relative right and left ventricular size. Circulation 54(1):83–91, 1976.

    Article  Google Scholar 

  26. Rosamond, W., K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, et al. Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 117(4):e25–e146, 2008.

    Google Scholar 

  27. Sack, K. L., B. Baillargeon, G. Acevedo-Bolton, M. Genet, N. Rebelo, E. Kuhl, et al. Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in silico. Int. J Artif. Organ. 39(8):421–430, 2016. https://doi.org/10.5301/ijao.5000520.

    Article  Google Scholar 

  28. Scardulla, F., D. Bellavia, P. Vitulo, G. Romano, C. Mina, G. Gentile, et al. Biomechanical determinants of right ventricular failure in pulmonary hypertension. ASAIO J. 2017. https://doi.org/10.1097/MAT.0000000000000683.

    Article  Google Scholar 

  29. Scardulla, F., A. Rinaudo, S. Pasta, and C. Scardulla. Mechanics of pericardial effusion: a simulation study. Proc. Inst. Mech. Eng. Part H 229(3):205–214, 2015. https://doi.org/10.1177/0954411915574012.

    Article  Google Scholar 

  30. Scardulla, F., A. Rinaudo, S. Pasta, and C. Scardulla. Evaluation of ventricular wall stress and cardiac function in patients with dilated cardiomyopathy. Proc. Inst. Mech. Eng. Part H 230(1):71–74, 2016. https://doi.org/10.1177/0954411915617984.

    Article  Google Scholar 

  31. Song, X., A. Untaroiu, H. G. Wood, P. E. Allaire, A. L. Throckmorton, S. W. Day, et al. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. ASAIO J. 50(3):215–224, 2004.

    Article  Google Scholar 

  32. Vandenberghe, S., P. Segers, B. Meyns, and P. Verdonck. Unloading effect of a rotary blood pump assessed by mathematical modeling. Artif. Organs. 27(12):1094–1101, 2003. https://doi.org/10.1111/j.1525-1594.2003.07198.x.

    Article  Google Scholar 

  33. Walker, J. C., M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, et al. MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Heart C. 289(2):H692–H700, 2005. https://doi.org/10.1152/ajpheart.01226.2004.

    Article  Google Scholar 

  34. Wang, Y., N. Loghmanpour, S. Vandenberghe, A. Ferreira, B. Keller, J. Gorcsan, et al. Simulation of dilated heart failure with continuous flow circulatory support. PLoS ONE. 9(1):e85234, 2014. https://doi.org/10.1371/journal.pone.0085234.

    Article  Google Scholar 

  35. Wenk, J. F., L. Ge, Z. Zhang, M. Soleimani, D. D. Potter, A. W. Wallace, et al. A coupled biventricular finite element and lumped-parameter circulatory system model of heart failure. Comput. Methods Biomech. Biomed. Eng. 16(8):807–818, 2013. https://doi.org/10.1080/10255842.2011.641121.

    Article  Google Scholar 

Download references

Acknowledgments

Mr. Francesco Scardulla acknowledges the Italian Ministry of Education, University and Research for supporting his research, and Dr. Pasta of the Fondazione Ri.MED for supporting his research on cardiovascular biomechanics. The authors thank Mr Warren Blumberg for his editorial assistance.

Conflict of interest

Author F Scardulla, Author V Agnese, Author G Romano, Author G Di Gesare, Author S Sciacca, Author D Bellavia, Author F Clemenza, Author M Pilato, Author S Pasta declare that they have no conflict of interest.

Ethical Standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study. Additional informed consent was obtained from all patients for which identifying information is included in this article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pasta.

Additional information

Associate Editors Scott C. Corbett and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scardulla, F., Agnese, V., Romano, G. et al. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis. Cardiovasc Eng Tech 9, 427–437 (2018). https://doi.org/10.1007/s13239-018-0358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0358-x

Keywords

Navigation