Skip to main content
Log in

Numerical Investigation of the Effect of Additional Pulmonary Blood Flow on Patient-Specific Bilateral Bidirectional Glenn Hemodynamics

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The effect of additional pulmonary blood flow (APBF) on the hemodynamics of bilateral bidirectional Glenn (BBDG) connection was marginally discussed in previous studies. This study assessed this effect using patient-specific numerical simulation. A 15-year-old female patient who underwent BBDG was enrolled in this study. Patient-specific anatomy, flow waveforms, and pressure tracings were obtained using computed tomography, Doppler ultrasound technology, and catheterization, respectively. Computational fluid dynamic simulations were performed to assess flow field and derived hemodynamic metrics of the BBDG connection with various APBF. APBF showed noticeable effects on the hemodynamics of the BBDG connection. It suppressed flow mixing in the connection, which resulted in a more antegrade flow structure. Also, as the APBF rate increases, both power loss and reflux in superior venae cavae (SVCs) monotonically increases while the flow ratio of the right to the left pulmonary artery (RPA/LPA) monotonically decreases. However, a non-monotonic relationship was observed between the APBF rate and indexed power loss. A high APBF rate may result in a good flow ratio of RPA/LPA but with the side effect of bad power loss and remarkable reflux in SVCs, and vice versa. A moderate APBF rate could be favourable because it leads to an optimal indexed power loss and achieves the acceptable flow ratio of RPA/LPA without causing severe power loss and reflux in SVCs. These findings suggest that patient-specific numerical simulation should be used to assist clinicians in determining an appropriate APBF rate based on desired outcomes on a patient-specific basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Amodeo, A., and R. M. Di Donato. The unifocal bilateral bidirectional cavopulmonary anastomosis. Ann. Thorac. Surg. 84:2134–2135, 2007.

    Article  Google Scholar 

  2. Amodeo, A., M. Grigioni, S. Filippelli, M. G. Gagliardi, C. Del Gaudio, U. Morbiducci, G. D’Avenio, G. Brancaccio, and R. M. Di Donato. Improved management of systemic venous anomalies in a single ventricle: new rationale. J. Thorac. Cardiovasc. Surg. 138:1154–1159, 2009.

    Article  Google Scholar 

  3. Bazilevs, Y., M. H. D. J. Benson, S. S. A. L. Marsden, M. M.-C. Hsu, D. J. D. Benson, S. Sankaran, and A. L. Marsden. Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 45:77–89, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bove, E. L., M. R. de Leval, F. Migliavacca, G. Guadagni, and G. Dubini. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the norwood procedure for hypoplastic left heart syndrome. unfiled. J. Thorac. Cardiovasc. Surg. 126:1040–1047, 2003.

    Article  Google Scholar 

  5. Calvaruso, D. F., A. Rubino, S. Ocello, et al. Bidirectional Glenn and antegrade pulmonary blood flow: temporary or definitive palliation? Ann. Thorac. Surgery 2008. https://doi.org/10.1016/j.athoracsur.2008.01.013.

    Google Scholar 

  6. Dasi, L. P., K. Pekkan, D. de Zelicourt, K. S. Sundareswaran, R. Krishnankutty, P. J. Delnido, and A. P. Yoganathan. Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states. Ann. Biomed. Eng. 37:661–673, 2009.

    Article  Google Scholar 

  7. Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41:2246–2252, 2008.

    Article  Google Scholar 

  8. de Leval, M. R., G. Dubini, F. Migliavacca, H. Jalali, G. Camporini, A. Redington, and R. Pietrabissa. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J. Thorac. Cardiovasc. Surg. 111:502–513, 1996.

    Article  Google Scholar 

  9. de Zélicourt, D. A., C. M. Haggerty, K. S. Sundareswaran, et al. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J. Thorac. Cardiovasc. Surg. 141:1170–1177, 2011.

    Article  Google Scholar 

  10. Dubini, G., F. Migliavacca, G. Pennati, Leval M. R. De, and E. L. Bove. Ten years of modelling to achieve haemodynamic optimisation of the Total Cavopulmonary Connection. Biorheology 14:48–52, 2004.

    Google Scholar 

  11. Elhinney, D. B. M. C., V. M. Reddy, F. L. Hanley, and P. Moore. Systemic venous collateral channels causing desaturation after bidirectional cavopulmonary anastomosis: evaluation and management. J. Am. Coll. Cardiol. 30:817–824, 1997.

    Article  Google Scholar 

  12. Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gandy, K., and F. Hanley. Management of systemic venous anomalies in the pediatric cardiovascular surgical patient. Semin. Thorac. Cardiovasc. Surg. 1:63–74, 2006.

    Article  Google Scholar 

  14. Gerelli, S., C. Boulitrop, M. Van Steenberghe, D. Maldonado, M. Bojan, O. Raisky, D. Sidi, and P. R. Vouhe. Bidirectional cavopulmonary shunt with additional pulmonary blood flow: a failed or successful strategy? Eur. J. Cardiothorac. Surg. 42:513–519, 2012.

    Article  Google Scholar 

  15. Ghoreyshi, M., M. S. Saidi, M. A. Navabi, B. D. Firoozabadi, and R. Shabanian. Numerical investigation of Antegrade Flow effects on fl ow pulsations in Fontan operation. Int. J. Biomed. Eng. Technol. 2012. https://doi.org/10.1504/IJBET.2012.050291.

    Google Scholar 

  16. Haggerty, C., and D. de Zélicourt. Comparing pre-and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Ann Biomed 40:2639–2651, 2012.

    Article  Google Scholar 

  17. Haggerty, C. M., K. K. Whitehead, J. Bethel, M. A. Fogel, and A. P. Yoganathan. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics. Ann. Thorac. Surg. 99:911–917, 2015.

    Article  Google Scholar 

  18. Honjo, O., K. C. D. Tran, Z. Hua, P. Sapra, A. A. Alghamdi, J. L. Russell, C. A. Caldarone, and G. S. Van Arsdell. Impact of evolving strategy on clinical outcomes and central pulmonary artery growth in patients with bilateral superior vena cava undergoing a bilateral bidirectional cavopulmonary shunt. J. Thorac. Cardiovasc. Surg. 140:528.e1, 2010.

    Article  Google Scholar 

  19. Kaufmann, T. A. S., M. Neidlin, M. Büsen, S. J. Sonntag, and U. Steinseifer. Implementation of intrinsic lumped parameter modeling into computational fluid dynamics studies of cardiopulmonary bypass. J. Biomech. 47:729–735, 2014.

    Article  Google Scholar 

  20. Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101:139–143, 2015.

    Article  Google Scholar 

  21. Kurotobi, S. Bidirectional cavopulmonary shunt with right ventricular outflow patency: the impact of pulsatility on pulmonary endothelial function. J. Thorac. Cardiovasc. Surg. 121:1161–1168, 2001.

    Article  Google Scholar 

  22. Liu, Y. T., K. Pekkan, S. C. Jones, and A. P. Yoganathan. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary Connection. J. Biomech. Eng. 126:594–603, 2004.

    Article  Google Scholar 

  23. Long, C. C., M. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid—structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28:513–527, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mainwaring, R. D., J. J. Lamberti, K. Uzark, R. L. Spicer, M. W. Cocalis, and J. W. Moore. Effect of accessory pulmonary blood flow on survival after the bidirectional Glenn procedure. Circulation 100:II151–II156, 1999.

    Article  Google Scholar 

  25. McElhinney, D. B., S. M. Marianeschi, and V. M. Reddy. Additional pulmonary blood flow with the bidirectional Glenn anastomosis: does it make a difference? Ann. Thorac. Surg. 66:668–672, 1998.

    Article  Google Scholar 

  26. Migliavacca, F., M. R. de Leval, G. Dubini, and R. Pietrabissa. A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J. Biomech. Eng. 118:520, 1996.

    Article  Google Scholar 

  27. Mirabella, L., C. M. Haggerty, T. Passerini, M. Piccinelli, A. J. Powell, P. J. Del Nido, A. Veneziani, and A. P. Yoganathan. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int J Numer Method Biomed Eng 29:197–216, 2013.

    Article  MathSciNet  Google Scholar 

  28. Orlando, W., R. Shandas, and C. Degroff. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Work 1:220–227, 2006.

    Google Scholar 

  29. Pekkan, K., L. P. Dasi, D. de Zelicourt, K. S. Sundareswaran, M. A. Fogel, K. R. Kanter, and A. P. Yoganathan. Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. Hemi-Fontan templates. Ann Biomed Eng 37:50–63, 2009.

    Article  Google Scholar 

  30. Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. De Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. P. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical Biol Eng Comput 46(11):1139–1152, 2008.

    Article  Google Scholar 

  31. Pennati, G., F. Migliavacca, G. Dubini, R. Pietrabissa, R. Fumero, and M. R. de Leval. Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow. J. Surg. Res. 89:43–52, 2000.

    Article  Google Scholar 

  32. Pennati, G., D. Ph, F. Migliavacca, G. Dubini, R. Pietrabissa, R. Fumero, M. Sc, and Leval M. R. De. Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow 1. J. Surg. Res. 52:43–52, 2000.

    Article  Google Scholar 

  33. Physiol, A. J., H. Circ, F. March, et al. Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise. Am. J. Physiol. 2011. https://doi.org/10.1152/ajpheart.00022.2004.

    Google Scholar 

  34. Qian, Y., J. L. Liu, K. Itatani, K. Miyaji, and M. Umezu. Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann. Biomed. Eng. 38:2302–2313, 2010.

    Article  Google Scholar 

  35. Qian, Y., J. F. L. Liu, and J. F. L. Liu. Hemodynamic simulation for surgical treatment of congenital heart disease. Annu Int Conf IEEE EMBS 2012:661–664, 2012.

    Google Scholar 

  36. Reddy, V. M., D. B. McElhinney, P. Moore, G. S. Haas, and F. L. Hanley. Outcomes after bidirectional cavopulmonary shunt in infants less than 6 months old. J. Am. Coll. Cardiol. 29:1365–1370, 1997.

    Article  Google Scholar 

  37. Seliem, M. A., J. Murphy, J. Vetter, S. Heyman, and W. Norwood. Lung perfusion patterns after bidirectional cavopulmonary anastomosis (Hemi-Fontan procedure). Pediatr. Cardiol. 18:191–196, 1997.

    Article  Google Scholar 

  38. Si, B., Z.-S. Luan, T.-J. Wang, Y.-S. Ning, N. Li, M. Zhu, Z.-M. Liu, G.-H. Ding, and B. Qiao. Distribution of lung blood on modified bilateral Glenn shunt evaluated by Tc-99 m-MAA lung perfusion scintigraphy: a retrospective study. Medicine (Baltimore) 95:e4920, 2016.

    Article  Google Scholar 

  39. Sun, Q., D. Wan, J. Liu, Y. Liu, M. Zhu, H. Hong, Y. Sun, and Q. Wang. Influence of antegrade pulmonary blood flow on the hemodynamic performance of bidirectional cavopulmonary anastomosis: a numerical study. Med. Eng. Phys. 31:227–233, 2009.

    Article  Google Scholar 

  40. Webber, S. A., P. Horvath, J. G. LeBlanc, et al. Influence of competitive pulmonary blood flow on the bidirectional superior cavopulmonary shunt : a multi-institutional study. Circulation 92:279–286, 1995.

    Article  Google Scholar 

  41. Wei, Z., Z. Charlie Zheng, and X. Yang. Computation of flow through a three-dimensional periodic array of porous structures by a parallel immersed-boundary method. J. Fluids Eng. 136:40905, 2014.

    Article  Google Scholar 

  42. Wei, Z., P. M. Trusty, M. Tree, C. M. Haggerty, E. Tang, M. Fogel, and A. P. Yoganathan. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? J. Biomech. 50:172–179, 2016.

    Article  Google Scholar 

  43. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.

    Article  Google Scholar 

  44. Xu, Y., Y. Liu, X. Lü, Y. Li, and C. Yu. Bilateral bidirectional superior cavopulmonary shunt is more beneficial in medium and long term clinical outcomes than unilateral shunt. Chin. Med. J. (Engl) 122:129–135, 2009.

    Google Scholar 

  45. Yamada, K., X. Roques, N. Elia, M. N. Laborde, M. Jimenez, A. Choussat, and E. Baudet. The short- and mid-term results of bidirectional cavopulmonary shunt with additional source of pulmonary blood flow as definitive palliation for the functional single ventricular heart. unfiled. Eur. J. Cardiothorac. Surg. 18:683–689, 2000.

    Article  Google Scholar 

  46. Yoshida, M., M. Yamaguchi, N. Yoshimura, H. Murakami, H. Matsuhisa, and Y. Okita. Appropriate additional pulmonary blood flow at the bidirectional Glenn procedure is useful for completion of total cavopulmonary connection. Ann. Thorac. Surg. 80:976–981, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Xudong Liu and Jialiang Chen for technical support in performing the study. We heartily appreciate the selfless exertion and precious suggestions from my teachers and collègues.

Conflict of interest

All authors declare that they have no conflict of interest.

Funding

This study was funded by National Key Basic Research Program of China (Grant Number 2013CB945403).

Ethical Approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghong Ding.

Additional information

Associate Editor Mark Fogel and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, B., Qiao, B., Yang, G. et al. Numerical Investigation of the Effect of Additional Pulmonary Blood Flow on Patient-Specific Bilateral Bidirectional Glenn Hemodynamics. Cardiovasc Eng Tech 9, 193–201 (2018). https://doi.org/10.1007/s13239-018-0341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0341-6

Keywords

Navigation