Skip to main content
Log in

Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography. Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in X-ray angiograms of barium-perfused autopsy hearts. Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of WSS, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Brooks, A. R., P. I. Lelkes, and G. M. Rubanyi. Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis. Endothelium 11(1):45–57, 2004. doi:10.1080/10623320490432470.

    Article  Google Scholar 

  2. Campbell, I. C., J. Ries, S. S. Dhawan, A. A. Quyyumi, W. R. Taylor, and J. N. Oshinski. Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 134(5):051001, 2012. doi:10.1115/1.4006681.

    Article  Google Scholar 

  3. Chatzizisis, Y. S., M. Jonas, A. U. Coskun, R. Beigel, B. V. Stone, C. Maynard, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117(8):993–1002, 2008. doi:10.1161/CIRCULATIONAHA.107.695254.

    Article  Google Scholar 

  4. Durand, E., A. Scoazec, A. Lafont, J. Boddaert, A. Al Hajzen, F. Addad, et al. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109(21):2503–2506, 2004. doi:10.1161/01.CIR.0000130172.62481.90.

    Article  Google Scholar 

  5. Eshtehardi, P., J. Luke, M. C. McDaniel, and H. Samady. Intravascular imaging tools in the cardiac catheterization laboratory: comprehensive assessment of anatomy and physiology. J. Cardiovasc. Transl. Res. 4(4):393–403, 2011. doi:10.1007/s12265-011-9272-4.

    Article  Google Scholar 

  6. Farb, A., A. P. Burke, A. L. Tang, T. Y. Liang, P. Mannan, J. Smialek, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93(7):1354–1363, 1996.

    Article  Google Scholar 

  7. Feldman, C. L., and P. H. Stone. Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr. Opin. Cardiol. 15(6):430–440, 2000.

    Article  Google Scholar 

  8. Formaggia, L., F. Nobile, A. Quarteroni, and A. Veneziani. Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2(2):75–83, 1999.

    Article  MATH  Google Scholar 

  9. Formaggia, L., A. Quarteroni, and A. Veneziani. Multiscale models of the vascular system. In: Cardiovascular Mathematics, edited by L. Formaggia, A. Quarteroni, and A. Veneziani. Milan: Springer, 2009.

    Chapter  Google Scholar 

  10. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22(2):165–197, 1968.

    Article  Google Scholar 

  11. Fujii, K., D. Kawasaki, M. Masutani, T. Okumura, T. Akagami, T. Sakoda, et al. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc. Imaging 3(2):168–175, 2010. doi:10.1016/j.jcmg.2009.11.004.

    Article  Google Scholar 

  12. Fukumoto, Y., T. Hiro, T. Fujii, G. Hashimoto, T. Fujimura, J. Yamada, et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in vivo color mapping of shear stress distribution. J. Am. Coll. Cardiol. 51(6):645–650, 2008. doi:10.1016/j.jacc.2007.10.030.

    Article  Google Scholar 

  13. Fuster, V., and J. H. Chesebro. Atherosclerosis—A. Pathogenesis: initiation, progression, acute coronary syndromes, and regression. In: Mayo Clinic Practice of Cardiology3rd, edited by E. Giuliani, B. Gersh, M. McGoon, D. Hayes, and H. Schaff. St. Louis: Mosby, 1996, pp. 1056–1081.

    Google Scholar 

  14. Gertz, S. D., G. Uretsky, R. S. Wajnberg, N. Navot, and M. S. Gotsman. Endothelial cell damage and thrombus formation after partial arterial constriction: relevance to the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation 63(3):476–486, 1981.

    Article  Google Scholar 

  15. Girasis, C., J. C. Schuurbiers, T. Muramatsu, J. P. Aben, Y. Onuma, S. Soekhradj, et al. Advanced three-dimensional quantitative coronary angiographic assessment of bifurcation lesions: methodology and phantom validation. EuroIntervention 8(12):1451–1460, 2013. doi:10.4244/EIJV8I12A219.

    Article  Google Scholar 

  16. Goubergrits, L., E. Wellnhofer, U. Kertzscher, K. Affeld, C. Petz, and H. C. Hege. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography. Ann. Biomed. Eng. 37(4):682–691, 2009. doi:10.1007/s10439-009-9656-7.

    Article  Google Scholar 

  17. Groen, H. C., F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van der Steen, et al. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38(8):2379–2381, 2007. doi:10.1161/STROKEAHA.107.484766.

    Article  Google Scholar 

  18. Heywood, J. G., R. Rannacher, and S. Turek. Artificial Boundaries and Flux and Pressure Conditions for the Incompressible Navier-Stokes Equations. Int. J. Numer. Methods Fluids 22(5):325–352, 1996. doi:10.1002/(sici)1097-0363(19960315)22:5<325::aid-fld307>3.0.co;2-y.

    Article  MathSciNet  MATH  Google Scholar 

  19. Knot, H. J., K. M. Lounsbury, J. E. Brayden, and M. T. Nelson. Gender differences in coronary artery diameter reflect changes in both endothelial Ca2+ and ecNOS activity. Am. J. Physiol. 276(3 Pt 2):H961–H969, 1999.

    Google Scholar 

  20. Kolodgie, F. D., A. P. Burke, T. N. Wight, and R. Virmani. The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture. Curr. Opin. Lipidol. 15(5):575–582, 2004.

    Article  Google Scholar 

  21. Koskinas, K. C., C. L. Feldman, Y. S. Chatzizisis, A. U. Coskun, M. Jonas, C. Maynard, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation 121(19):2092–2101, 2010. doi:10.1161/CIRCULATIONAHA.109.901678.

    Article  Google Scholar 

  22. Kramer, M. C., S. Z. Rittersma, R. J. de Winter, E. R. Ladich, D. R. Fowler, Y. H. Liang, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J. Am. Coll. Cardiol. 55(2):122–132, 2010. doi:10.1016/j.jacc.2009.09.007.

    Article  Google Scholar 

  23. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997. doi:10.1146/annurev.fluid.29.1.399.

    Article  MathSciNet  Google Scholar 

  24. Ku, D. N., and D. P. Giddens. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3(1):31–39, 1983.

    Article  Google Scholar 

  25. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  Google Scholar 

  26. Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71(4):850–858, 1992.

    Article  Google Scholar 

  27. Lovett, J. K., and P. M. Rothwell. Site of carotid plaque ulceration in relation to direction of blood flow: an angiographic and pathological study. Cerebrovasc. Dis. 16(4):369–375, 2003. doi:10.1159/000072559.

    Article  Google Scholar 

  28. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042, 1999.

    Article  Google Scholar 

  29. Mallat, Z., and A. Tedgui. Current perspective on the role of apoptosis in atherothrombotic disease. Circ. Res. 88(10):998–1003, 2001.

    Article  Google Scholar 

  30. McCord, B. N. Fatigue of Atherosclerotic Plaque. Georgia: Georgia Institute of Technology, 1992.

    Google Scholar 

  31. McDaniel, M. C., E. M. Galbraith, A. M. Jeroudi, O. R. Kashlan, P. Eshtehardi, J. Suo, et al. Localization of culprit lesions in coronary arteries of patients with ST-segment elevation myocardial infarctions: relation to bifurcations and curvatures. Am. Heart J. 161(3):508–515, 2011. doi:10.1016/j.ahj.2010.11.005.

    Article  Google Scholar 

  32. Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121(3):265–272, 1999.

    Article  Google Scholar 

  33. Para, A., D. Bark, A. Lin, and D. Ku. Rapid platelet accumulation leading to thrombotic occlusion. Ann. Biomed. Eng. 39(7):1961–1971, 2011. doi:10.1007/s10439-011-0296-3.

    Article  Google Scholar 

  34. Prati, F., S. Uemura, G. Souteyrand, R. Virmani, P. Motreff, L. Di Vito, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc. Imaging 6(3):283–287, 2013. doi:10.1016/j.jcmg.2012.12.007.

    Article  Google Scholar 

  35. Rathore, S., M. Terashima, H. Matsuo, Y. Kinoshita, M. Kimura, E. Tsuchikane, et al. Association of coronary plaque composition and arterial remodelling: a optical coherence tomography study. Atherosclerosis. 221(2):405–415, 2012. doi:10.1016/j.atherosclerosis.2011.10.018.

    Article  Google Scholar 

  36. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788, 2011. doi:10.1161/CIRCULATIONAHA.111.021824.

    Article  Google Scholar 

  37. Santamarina, A., E. Weydahl, J. M. Siegel, Jr., and J. E. Moore, Jr. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26(6):944–954, 1998.

    Article  Google Scholar 

  38. Schuurbiers, J. C., N. G. Lopez, J. Ligthart, F. J. Gijsen, J. Dijkstra, P. W. Serruys, et al. In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS). Catheter. Cardiovas. Interv. 73(5):620–626, 2009. doi:10.1002/ccd.21872.

    Article  Google Scholar 

  39. Shah, P. K. Mechanisms of plaque vulnerability and rupture. J. Am. College Cardiol. 41(4 Suppl S):15S–22S, 2003.

    Article  Google Scholar 

  40. Shah, P. K. Inflammation and plaque vulnerability. Cardiovasc. Drugs Ther. 23(1):31–40, 2009. doi:10.1007/s10557-008-6147-2.

    Article  Google Scholar 

  41. Sumi, T., A. Yamashita, S. Matsuda, S. Goto, K. Nishihira, E. Furukoji, et al. Disturbed blood flow induces erosive injury to smooth muscle cell-rich neointima and promotes thrombus formation in rabbit femoral arteries. J. Thromb. Haemost. 8(6):1394–1402, 2010. doi:10.1111/j.1538-7836.2010.03843.x.

    Article  Google Scholar 

  42. Tearney, G. J., E. Regar, T. Akasaka, T. Adriaenssens, P. Barlis, H. G. Bezerra, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59(12):1058–1072, 2012. doi:10.1016/j.jacc.2011.09.079.

    Article  Google Scholar 

  43. Timmins, L. H., J. Suo, P. Eshtehardi, S. S. Dhawan, M. C. McDaniel, J. N. Oshinski, et al. Geometric and Hemodynamic Evaluation of 3-Dimensional Reconstruction Techniques for the Assessment of Coronary Artery Wall Shear Stress in the Setting of Clinical Disease Progression. Farmington, PA: ASME, 2011.

    Google Scholar 

  44. Tricot, O., Z. Mallat, C. Heymes, J. Belmin, G. Leseche, and A. Tedgui. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101(21):2450–2453, 2000.

    Article  Google Scholar 

  45. van der Wal, A. C., A. E. Becker, C. M. van der Loos, and P. K. Das. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89(1):36–44, 1994.

    Article  Google Scholar 

  46. Vignon-Clementel, I. E., C. Alberto Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006. doi:10.1016/j.cma.2005.04.014.

    Article  MATH  Google Scholar 

  47. Virmani, R., A. P. Burke, A. Farb, and F. D. Kolodgie. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47(8 Suppl):C13–C18, 2006. doi:10.1016/j.jacc.2005.10.065.

    Article  Google Scholar 

  48. Wellnhofer, E., L. Goubergrits, U. Kertzscher, and K. Affeld. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Biomed. Eng. Online 5:39, 2006. doi:10.1186/1475-925X-5-39.

    Article  Google Scholar 

  49. Wootton, D. M., C. P. Markou, S. R. Hanson, and D. N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29(4):321–329, 2001. doi:10.1114/1.1359449.

    Article  Google Scholar 

  50. Yang, F., R. M. Minutello, S. Bhagan, A. Sharma, and S. C. Wong. The impact of gender on vessel size in patients with angiographically normal coronary arteries. J. Interv. Cardiol. 19(4):340–344, 2006. doi:10.1111/j.1540-8183.2006.00157.x.

    Article  Google Scholar 

  51. Yoshizumi, M., J. Abe, K. Tsuchiya, B. C. Berk, and T. Tamaki. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J. Pharmacol. Sci. 91(3):172–176, 2003.

    Article  Google Scholar 

  52. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31(4):420–429, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by an American Heart Association Predoctoral Fellowship (11PRE7040000, Campbell) and an American Heart Association Postdoctoral Fellowship (11POST7210012, Timmins), by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0644493, and by the National Institutes of Health Bioengineering Research Partnership Grant No. R01 HL70531. The Robert M. Nerem International Travel Award supported training for the execution of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Campbell.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, I.C., Timmins, L.H., Giddens, D.P. et al. Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion. Cardiovasc Eng Tech 4, 464–473 (2013). https://doi.org/10.1007/s13239-013-0165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0165-3

Keywords

Navigation