Skip to main content
Log in

Imaging Biomarkers for Intra-arterial Stroke Therapy

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Despite high rates of early revascularization with intra-arterial stroke therapy, the clinical efficacy of this approach has not been clearly demonstrated. Neuroimaging biomarkers will be useful in future trials for patient selection and for outcomes evaluation. To identify patients who are likely to benefit from intra-arterial therapy, the combination of vessel imaging, infarct size quantification and degree of neurologic deficit appears critical. Perfusion imaging may be useful in specific circumstances, but requires further validation. For measuring treatment outcomes, surrogate biomarkers that appear suitable are angiographic reperfusion as measured by the modified Thrombolysis in Cerebral Infarction scale and final infarct volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Abou-Chebl, A. Endovascular treatment of acute ischemic stroke may be safely performed with no time window limit in appropriately selected patients. Stroke 41(9):1996–2000, 2010.

    Article  Google Scholar 

  2. Arnold, M., K. Nedeltchev, L. Remonda, et al. Recanalisation of middle cerebral artery occlusion after intra-arterial thrombolysis: different recanalisation grading systems and clinical functional outcome. J. Neurol. Neurosurg. Psychiatry 76(10):1373–1376, 2005.

    Article  Google Scholar 

  3. Arsava, E., H. Ay, A. B. Singhal, W. Ona, K. L. Furie, and A. G. Sorenson, editor. An infarct volume threshold on early DWI to predict unfavorable clinical outcome. In: International Stroke Conference. New Orleans, Louisiana, 2008.

  4. Ay, H., E. M. Arsava, M. Vangel, et al. Interexaminer difference in infarct volume measurements on MRI: a source of variance in stroke research. Stroke 39(4):1171–1176, 2008.

    Article  Google Scholar 

  5. Bang, O. Y., J. L. Saver, S. J. Kim, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke 42(3):693–699, 2011.

    Article  Google Scholar 

  6. Barber, P. A., D. G. Darby, P. M. Desmond, et al. Identification of major ischemic change: diffusion-weighted imaging versus computed tomography. Stroke 30(10):2059–2065, 1999.

    Article  Google Scholar 

  7. Barber, P. A., A. M. Demchuk, J. Zhang, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355(9216):1670–1674, 2000.

    Article  Google Scholar 

  8. Bash, S., J. P. Villablanca, R. Jahan, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am. J. Neuroradiol. 26(5):1012–1021, 2005.

    Google Scholar 

  9. Bhatia, R., S. S. Bal, N. Shobha, et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke 42(6):1575–1580, 2011.

    Article  Google Scholar 

  10. Bhatia, R., M. D. Hill, N. Shobha, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 41(10):2254–2258, 2010.

    Article  Google Scholar 

  11. Bivard, A., P. McElduff, N. Spratt, et al. Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc. Dis. 31(3):238–245, 2011.

    Article  Google Scholar 

  12. Boers, A. M., H. A. Marquering, J. J. Jochem, et al. Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. AJNR Am. J. Neuroradiol., 2013. doi:10.3174/ajnr.A3463.

  13. Broderick, J. P., Y. Y. Palesch, A. M. Demchuk, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 368:893–903, 2013.

    Article  Google Scholar 

  14. Butcher, K. S., S. B. Lee, M. W. Parsons, et al. Differential prognosis of isolated cortical swelling and hypoattenuation on CT in acute stroke. Stroke 38(3):941–947, 2007.

    Article  Google Scholar 

  15. Camargo, E. C., K. L. Furie, A. B. Singhal, et al. Acute brain infarct: detection and delineation with CT angiographic source images versus nonenhanced CT scans. Radiology 244(2):541–548, 2007.

    Article  Google Scholar 

  16. Campbell, B. C., H. T. Tu, S. Christensen, et al. Assessing response to stroke thrombolysis: validation of 24-hour multimodal magnetic resonance imaging. Arch. Neurol. 69(1):46–50, 2012.

    Article  Google Scholar 

  17. Carroll, T. J., V. Teneggi, M. Jobin, et al. Absolute quantification of cerebral blood flow with magnetic resonance, reproducibility of the method, and comparison with H2(15)O positron emission tomography. J. Cereb. Blood Flow Metab. 22(9):1149–1156, 2002.

    Article  Google Scholar 

  18. Chemmanam, T., B. C. Campbell, S. Christensen, et al. Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion-diffusion mismatch. Neurology 75:1040–1047, 2010.

    Article  Google Scholar 

  19. Christensen, S., K. Mouridsen, O. Wu, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 40(6):2055–2061, 2009.

    Article  Google Scholar 

  20. Christoforidis, G. A., Y. Mohammad, D. Kehagias, et al. Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am. J. Neuroradiol. 26(7):1789–1797, 2005.

    Google Scholar 

  21. Ciccone, A., L. Valvassori, M. Nichelatti, et al. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 368:904–913, 2013.

    Article  Google Scholar 

  22. Dani, K. A., R. G. Thomas, F. M. Chappell, et al. Computed tomography and magnetic resonance perfusion imaging in ischemic stroke: definitions and thresholds. Ann. Neurol. 70(3):384–401, 2011.

    Article  Google Scholar 

  23. Davalos, A., V. M. Pereira, R. Chapot, et al. Retrospective multicenter study of Solitaire FR for revascularization in the treatment of acute ischemic stroke. Stroke 43(10):2699–2705, 2012.

    Article  Google Scholar 

  24. Davis, S. M., G. A. Donnan, M. W. Parsons, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 7(4):299–309, 2008.

    Article  Google Scholar 

  25. De Silva, D. A., J. N. Fink, S. Christensen, et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke 40(8):2872–2874, 2009.

    Article  Google Scholar 

  26. DeGraba, T. J., J. M. Hallenbeck, K. D. Pettigrew, et al. Progression in acute stroke: value of the initial NIH stroke scale score on patient stratification in future trials. Stroke 30(6):1208–1212, 1999.

    Article  Google Scholar 

  27. Demchuk, A. M., and IMS III Investigators, editor. IMS III: comparison of outcomes between IV and IV/IA treatment in baseline CTA confirmed ICA, M1, M2 and basilar occlusions. In: International Stroke Conference. Honolulu, Hawaii, 2013.

  28. Fahmi, F., H. A. Marquering, G. J. Streekstra, et al. Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages. AJNR Am. J. Neuroradiol. 33(11):2074–2080, 2012.

    Article  Google Scholar 

  29. Fiebach, J. B., P. D. Schellinger, O. Jansen, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33(9):2206–2210, 2002.

    Article  Google Scholar 

  30. Fiorella, D., J. Heiserman, E. Prenger, et al. Assessment of the reproducibility of postprocessing dynamic CT perfusion data. AJNR Am. J. Neuroradiol. 25(1):97–107, 2004.

    Google Scholar 

  31. Furlan, A., R. Higashida, L. Wechsler, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 282(21):2003–2011, 1999.

    Article  Google Scholar 

  32. Gonzalez, R. G. Imaging-guided acute ischemic stroke therapy: from “time is brain” to “physiology is brain”. AJNR Am. J. Neuroradiol. 27(4):728–735, 2006.

    Google Scholar 

  33. Goyal, M., B. K. Menon, and C. P. Derdeyn. Perfusion imaging in acute ischemic stroke: let us improve the science before changing clinical practice. Radiology 266(1):16–21, 2013.

    Article  Google Scholar 

  34. Hacke, W., A. J. Furlan, Y. Al-Rawi, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 8(2):141–150, 2009.

    Article  Google Scholar 

  35. Hakimelahi, R., A. J. Yoo, J. He, et al. Rapid identification of a major diffusion/perfusion mismatch in distal internal carotid artery or middle cerebral artery ischemic stroke. BMC Neurol. 12(1):132, 2012.

    Article  Google Scholar 

  36. Hill, M. D., A. M. Demchuk, T. A. Tomsick, et al. Using the baseline CT scan to select acute stroke patients for IV-IA therapy. AJNR Am. J. Neuroradiol. 27(8):1612–1616, 2006.

    Google Scholar 

  37. Hill, M. D., H. A. Rowley, F. Adler, et al. Selection of acute ischemic stroke patients for intra-arterial thrombolysis with pro-urokinase by using ASPECTS. Stroke 34(8):1925–1931, 2003.

    Article  Google Scholar 

  38. Jadhav, A. P., S. Nanduri, A. Aghaebrahim, S. Zaidi, M. Jumaa, G. Linares, V. Reddy, M. Hammer, B. Jankowitz, L. Wechsler, and T. G. Jovin. Octogenarians have high rates of favorable outcomes after endovascular therapy for acute stroke due to M1 occlusions if final infarct volumes are small. Stroke 44:ATP6, 2013.

    Article  Google Scholar 

  39. Jayaraman, M. V., J. A. Grossberg, K. M. Meisel, et al. The clinical and radiographic importance of distinguishing partial from near-complete reperfusion following intra-arterial stroke therapy. AJNR Am. J. Neuroradiol. 34(1):135–139, 2013.

    Article  Google Scholar 

  40. Johnston, K. C., K. M. Barrett, Y. H. Ding, et al. Clinical and imaging data at 5 days as a surrogate for 90-day outcome in ischemic stroke. Stroke 40(4):1332–1333, 2009.

    Article  Google Scholar 

  41. Jovin, T. G., D. S. Liebeskind, R. Gupta, et al. Imaging-based endovascular therapy for acute ischemic stroke due to proximal intracranial anterior circulation occlusion treated beyond 8 hours from time last seen well: retrospective multicenter analysis of 237 consecutive patients. Stroke 42(8):2206–2211, 2011.

    Article  Google Scholar 

  42. Jovin, T. G., H. Yonas, J. M. Gebel, et al. The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34(10):2426–2433, 2003.

    Article  Google Scholar 

  43. Kamalian, S., S. Kamalian, M. B. Maas, et al. CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 42(7):1923–1928, 2011.

    Article  Google Scholar 

  44. Kamalian, S., A. A. Konstas, M. B. Maas, et al. CT perfusion mean transit time maps optimally distinguish benign oligemia from true “at-risk” ischemic penumbra, but thresholds vary by postprocessing technique. AJNR Am. J. Neuroradiol. 33(3):545–549, 2012.

    Article  Google Scholar 

  45. Khatri, P., T. Abruzzo, S. D. Yeatts, et al. Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology 73(13):1066–1072, 2009.

    Article  Google Scholar 

  46. Kidwell, C. S., R. Jahan, J. Gornbein, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N. Engl. J. Med. 368(10):914–923, 2013.

    Article  Google Scholar 

  47. Kim, E. Y., J. H. Heo, S. K. Lee, et al. Prediction of thrombolytic efficacy in acute ischemic stroke using thin-section noncontrast CT. Neurology 67(10):1846–1848, 2006.

    Article  Google Scholar 

  48. Konstas, A. A., G. V. Goldmakher, T. Y. Lee, et al. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am. J. Neuroradiol. 30(5):885–892, 2009.

    Article  Google Scholar 

  49. Kucinski, T., C. Koch, B. Eckert, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 45(1):11–18, 2003.

    Google Scholar 

  50. Lansberg, M. G., G. W. Albers, C. Beaulieu, et al. Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology 54(8):1557–1561, 2000.

    Article  Google Scholar 

  51. Lansberg, M. G., M. Straka, S. Kemp, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol. 11(10):860–867, 2012.

    Article  Google Scholar 

  52. Lansberg, M. G., V. N. Thijs, R. Bammer, et al. Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 38(8):2275–2278, 2007.

    Article  Google Scholar 

  53. Latchaw, R. E., M. J. Alberts, M. H. Lev, et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke 40(11):3646–3678, 2009.

    Article  Google Scholar 

  54. Lev, M. H., J. Farkas, J. J. Gemmete, et al. Acute stroke: improved nonenhanced CT detection—benefits of soft-copy interpretation by using variable window width and center level settings. Radiology 213(1):150–155, 1999.

    Article  Google Scholar 

  55. Lev, M. H., J. Farkas, V. R. Rodriguez, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J. Comput. Assist. Tomogr. 25(4):520–528, 2001.

    Article  Google Scholar 

  56. Liebeskind, D. S. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin. N. Am. 15(3):553–573, 2005.

    Article  Google Scholar 

  57. Liebeskind, D. S., N. Sanossian, W. H. Yong, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 42(5):1237–1243, 2011.

    Article  Google Scholar 

  58. Luby, M., J. L. Bykowski, P. D. Schellinger, et al. Intra- and interrater reliability of ischemic lesion volume measurements on diffusion-weighted, mean transit time and fluid-attenuated inversion recovery MRI. Stroke 37(12):2951–2956, 2006.

    Article  Google Scholar 

  59. Maas, M. B., K. L. Furie, M. H. Lev, et al. National Institutes of Health Stroke Scale score is poorly predictive of proximal occlusion in acute cerebral ischemia. Stroke 40(9):2988–2993, 2009.

    Article  Google Scholar 

  60. Marks, M. P., M. G. Lansberg, M. Mylnash, M. Straka, S. Kemp, M. Inoue, A. Tipirneni, R. McTaggart, G. Zaharchuk, R. Bammer, G. W. Albers, and DEFUSE 2 Investigators. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome in the DEFUSE 2 trial. Stroke 44:A63, 2013.

    Article  Google Scholar 

  61. Mehta, B. P., T. M. Leslie-Mazwi, R. V. Chandra, D. L. Bell, J. D. Rabinov, C. S. Ogilvy, J. A. Hirsch, J. N. Goldstein, N. S. Rost, L. H. Schwamm, and A. J. Yoo. Reducing time to intra-arterial therapy in acute ischemic stroke. Stroke 44:A19, 2013.

    Article  Google Scholar 

  62. Moftakhar, P., J. D. English, D. L. Cooke, et al. Density of thrombus on admission CT predicts revascularization efficacy in large vessel occlusion acute ischemic stroke. Stroke 44(1):243–245, 2013.

    Article  Google Scholar 

  63. Morais, L. T., T. M. Leslie-Mazwi, M. H. Lev, G. W. Albers, and A. J. Yoo. Imaging-based selection for intra-arterial stroke therapies. J. Neurointerv. Surg., 2013. doi:10.1136/neurintsurg-2013-010733.

  64. Nogueira, R. G., H. L. Lutsep, R. Gupta, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet 380(9849):1231–1240, 2012.

    Article  Google Scholar 

  65. Parsons, M., N. Spratt, A. Bivard, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N. Engl. J. Med. 366(12):1099–1107, 2012.

    Article  Google Scholar 

  66. Penumbra Pivotal Stroke Trial Investigators. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 40(8):2761–2768, 2009.

    Article  Google Scholar 

  67. Pulli, B., P. W. Schaefer, R. Hakimelahi, et al. Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology 262(2):593–604, 2012.

    Article  Google Scholar 

  68. Puntmann, V. O. How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease. Postgrad. Med. J. 85(1008):538–545, 2009.

    Article  Google Scholar 

  69. Riedel, C. H., U. Jensen, A. Rohr, et al. Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced Computed Tomography reconstructions. Stroke 41(8):1659–1664, 2010.

    Article  Google Scholar 

  70. Riedel, C. H., P. Zimmermann, U. Jensen-Kondering, et al. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 42(6):1775–1777, 2011.

    Article  Google Scholar 

  71. Sanak, D., V. Nosal, D. Horak, et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology 48(9):632–639, 2006.

    Article  Google Scholar 

  72. Saver, J. L., R. Jahan, E. I. Levy, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 380(9849):1241–1249, 2012.

    Article  Google Scholar 

  73. Schaefer, P. W., E. R. Barak, S. Kamalian, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke 39(11):2986–2992, 2008.

    Article  Google Scholar 

  74. Schellinger, P. D., R. N. Bryan, L. R. Caplan, et al. Evidence-based guideline: the role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 75(2):177–185, 2010.

    Article  Google Scholar 

  75. Schellinger, P. D., O. Jansen, J. B. Fiebach, et al. Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia. AJNR Am. J. Neuroradiol. 21(7):1184–1189, 2000.

    Google Scholar 

  76. Schramm, P., P. D. Schellinger, J. B. Fiebach, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33(10):2426–2432, 2002.

    Article  Google Scholar 

  77. Singer, O. C., M. C. Humpich, J. Fiehler, et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 63(1):52–60, 2008.

    Article  Google Scholar 

  78. Smith, W. S., G. Sung, J. Saver, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 39(4):1205–1212, 2008.

    Article  Google Scholar 

  79. Soares, B. P., J. D. Chien, and M. Wintermark. MR and CT monitoring of recanalization, reperfusion, and penumbra salvage: everything that recanalizes does not necessarily reperfuse!. Stroke 40(3 Suppl):S24–S27, 2009.

    Article  Google Scholar 

  80. Soares, B. P., E. Tong, J. Hom, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using ct in acute ischemic stroke patients. Stroke 41(1):e34–e40, 2009.

    Article  Google Scholar 

  81. Takasawa, M., P. S. Jones, J. V. Guadagno, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 39(3):870–877, 2008.

    Article  Google Scholar 

  82. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333(24):1581–1587, 1995.

    Article  Google Scholar 

  83. Tomanek, A. I., S. B. Coutts, A. M. Demchuk, et al. MR angiography compared to conventional selective angiography in acute stroke. Can. J. Neurol. Sci. 33(1):58–62, 2006.

    Google Scholar 

  84. Tomsick, T., J. Broderick, J. Carrozella, et al. Revascularization results in the Interventional Management of Stroke II trial. AJNR Am. J. Neuroradiol. 29(3):582–587, 2008.

    Article  Google Scholar 

  85. Unger, E., J. Littlefield, and M. Gado. Water content and water structure in CT and MR signal changes: possible influence in detection of early stroke. AJNR Am. J. Neuroradiol. 9(4):687–691, 1988.

    Google Scholar 

  86. van der Worp, H. B., S. P. Claus, P. R. Bar, et al. Reproducibility of measurements of cerebral infarct volume on CT scans. Stroke 32(2):424–430, 2001.

    Article  Google Scholar 

  87. von Kummer, R., H. Bourquain, S. Bastianello, et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology 219(1):95–100, 2001.

    Article  Google Scholar 

  88. Wheeler, H. M., M. Mlynash, M. Inoue, et al. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke 44(3):681–685, 2013.

    Article  Google Scholar 

  89. Wintermark, M., G. W. Albers, A. V. Alexandrov, et al. Acute stroke imaging research roadmap. AJNR Am. J. Neuroradiol. 29(5):e23–e30, 2008.

    Article  Google Scholar 

  90. Wintermark, M., A. E. Flanders, B. Velthuis, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37(4):979–985, 2006.

    Article  Google Scholar 

  91. Yoo, A. J., E. R. Barak, W. A. Copen, et al. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with National Institutes of Health Stroke Scale Score improves the prediction of acute stroke outcome. Stroke 41(8):1728–1735, 2010.

    Article  Google Scholar 

  92. Yoo, A. J., Z. A. Chaudhry, R. G. Gonzalez, M. Goyal, A. Demchuk, E. Mualem, H. Buell, S. P. Sit, A. Bose, and The Penumbra Pivotal and PICS Investigators. Refining the pre-treatment noncontrast CT ASPECTS threshold for IAT selection: pooled analysis of the penumbra pivotal study and PICS registry. Stroke 43:A72, 2012.

    Article  Google Scholar 

  93. Yoo, A. J., Z. A. Chaudhry, R. G. Nogueira, et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy. Stroke 43(5):1323–1330, 2012.

    Article  Google Scholar 

  94. Yoo, A. J., D. V. Heck, D. Frei, M. Aceves, H. Buell, S. Kuo, S. Kamalian, L. Morais, S. P. Sit, A. Bose, and The Penumbra THERAPY Investigators. Preliminary clot length analysis of anterior circulation large vessel occlusions. Stroke 44:A193, 2013.

    Article  Google Scholar 

  95. Yoo, A. J., C. Z. Simonsen, S. Prabhakaran, Z. A. Chaudhry, M. Issa, J. E. Fugate, I. Linfante, D. F. Kallmes, G. Dabus, and O. O. Zaidat. Refining angiographic biomarkers of reperfusion: modified TICI is superior to TIMI for predicting clinical outcomes after intra-arterial therapy. Stroke 44:A62, 2013.

    Article  Google Scholar 

  96. Yoo, A. J., L. A. Verduzco, P. W. Schaefer, et al. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke 40(6):2046–2054, 2009.

    Article  Google Scholar 

  97. Yuki, I., I. Kan, H. V. Vinters, et al. The impact of thromboemboli histology on the performance of a mechanical thrombectomy device. AJNR Am. J. Neuroradiol. 33(4):643–648, 2012.

    Article  Google Scholar 

  98. Zaidi, S. F., A. Aghaebrahim, X. Urra, et al. Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke 43(12):3238–3244, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Yoo.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkhemer, O.A., Kamalian, S., González, R.G. et al. Imaging Biomarkers for Intra-arterial Stroke Therapy. Cardiovasc Eng Tech 4, 339–351 (2013). https://doi.org/10.1007/s13239-013-0148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0148-4

Keywords

Navigation