Skip to main content
Log in

Characterization of Optical System for Hemodynamic Multi-Parameter Assessment

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are a growing epidemiological burden in today’s society. A great deal of effort has been made to find solutions able to perform non-invasive monitoring and early diagnosis of such pathologies. The pulse wave velocity and certain waveform characteristics constitute some of the most important cardiovascular risk indicators. Optical sensors are an attractive instrumental solution in this kind of time assessment applications due to their truly non-contact operation capability and better resolution than commercial devices. This study consisted on the experimental validation and a clinical feasibility for a non-invasive and multi-parametric optical system for evaluation of the cardiovascular condition. Two prototypes, based on two different types of photodetectors (planar and avalanche photodiode) were tested in a small group of volunteers, and the main hemodynamic parameters were measured, such as pulse wave velocity and indexes of pulse waveform analysis: the Augmentation Index, Subendocardial Viability Ratio and Ejection Time Index. The probes under study proved to be able to measure the pulse pressure wave in a reliable manner at the carotid site, and demonstrated the consistency of the parameters determined using dedicated algorithms. This study represents a preliminary evaluation of an optical system devoted to the clinical evaluation environment. Further development to take this system to a higher level of clinical significance, by incorporating it in a multicenter study, is currently underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Avolio, A. P., M. Butlin, and A. Walsh. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment. Physiol. Meas. 31(1):R1–R47, 2010.

    Article  Google Scholar 

  2. Blacher, J., R. Asmar, S. Djane, G. M. London, and M. E. Safar. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33(5):1111–1117, 1999.

    Article  Google Scholar 

  3. Boutouyrie, P., M. Briet, S. Vermeersch, and B. Pannier. Assessment of pulse wave velocity. Artery Res. 3(3–8):2009, 2009.

    Google Scholar 

  4. Boutouyrie, P., et al. Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension 25(4):651–659, 1995.

    Article  Google Scholar 

  5. Chemla, D., et al. Subendocardial viability ratio estimated by arterial tonometry: a critical evaluation in elderly hypertensive patients with increased aortic stiffness. Clin. Exp. Pharmacol. Physiol. 35(8):909–915, 2008.

    Article  Google Scholar 

  6. Crilly, M., C. Coch, M. Bruce, H. Clark, and D. Williams. Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study. Vasc. Med. (London, England) 12(3):189–197, 2007.

    Google Scholar 

  7. Hermeling, E., et al. Noninvasive assessment of arterial stiffness should discriminate between systolic and diastolic pressure ranges. Hypertension 55(1):124–130, 2010.

    Article  Google Scholar 

  8. Istratoaie, O., R. Mustafa, and I. Donoiu. Central aortic pressure estimated by radial applanation tonometry in hypertensive pulmonary oedema. J. Hypertens. 28, 2010.

  9. Kara, S., M. Okandan, G. Usta, and T. Tezcaner. Investigation of a new heart contractility power parameter. Comput. Methods Programs Biomed. 76(2):177–180, 2004.

    Article  Google Scholar 

  10. Kelly, R., and D. Fitchett. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J. Am. Coll. Cardiol. 20(4):952–963, 1992.

    Article  Google Scholar 

  11. Korpas, D., J. Hálek, and L. Dolezal. Parameters describing the pulse wave. Physiol. Res. 58(4):473–479, 2009.

    Google Scholar 

  12. Laine, G. A. Change in (dP/dt)max as an index of myocardial micravascular permeability. Circ. Res. 61:203–208, 1987.

    Article  Google Scholar 

  13. Lamia, B., D. Chemla, C. Richard, and J.-L. Teboul. Clinical review: interpretation of arterial pressure wave in shock states. Crit. Care (London, England) 9(6):601–606, 2005.

    Google Scholar 

  14. Millasseau, S. C., A. D. Stewart, S. J. Patel, S. R. Redwood, and P. J. Chowienczyk. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension 45(2):222–226, 2005.

    Article  Google Scholar 

  15. Miller, R. S., C. B. Rudra, and M. A Williams. First-trimester mean arterial pressure and risk of preeclampsia. Am. J. Hypertens. 20(5):573–578, 2007.

    Google Scholar 

  16. Nagasaki, T., et al. Clinical utility of heart-carotid pulse wave velocity in healthy Japanese subjects. Biomed. Aging Pathol. 1(2):107–111, 2011.

    Article  Google Scholar 

  17. Nelson, M. R., J. Stepanek, M. Cevette, M. Covalciuc, R. T. Hurst, and J. Tajik. Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform? Mayo Clin. Proc. 85(5):460–472, 2010.

    Article  Google Scholar 

  18. Payne, R. A., R. C. Hilling-Smith, D. J. Webb, S. R. Maxwell, and M. A. Denvir. Augmentation index assessed by applanation tonometry is elevated in Marfan Syndrome. J. Cardiothorac. Surg. 2:43, 2007.

    Google Scholar 

  19. Pereira, T., et al. Non-contact Pulse Wave Velocity Assessment. Berlin: Springer, 2012 (BIOSTEC 2011, CCIS 273, no. 2, pp. 246–257, 2012).

  20. Pereira, T., M. Cabeleira, P. Matos, E. Borges, J. Cardoso, and C. Correia. Optical methods for local pulse wave velocity assessment. In: 4th International Joint Conference on Biomedical Engineering Systems and Technologies, Rome, Italy, pp. 74–81, 2011.

  21. Pereira, T., et al. Signal analysis in a new optical pulse waveform profiler for cardiovascular applications. Signal and Image Processing and Applications/716: Artificial Intelligence and Soft Computing, no. Sipa, pp. 19–25, 2011.

  22. Rabben, S. I., et al. An ultrasound-based method for determining pulse wave velocity in superficial arteries. J. Biomech. 37(10):1615–1622, 2004.

    Article  Google Scholar 

  23. Safar, M. E. Arterial stiffness: a simplified overview in vascular medicine. Atheroscler. Large Arter. Cardiovasc. Risk 44:1–18, 2007.

    Article  Google Scholar 

  24. Sharman, J. E., J. E. Davies, C. Jenkins, and T. H. Marwick. Augmentation index, left ventricular contractility, and wave reflection. Hypertension 54(5):1099–1105, 2009.

    Article  Google Scholar 

  25. Siebenhofer, A., C. Kemp, A. Sutton, and B. Williams. The reproducibility of central aortic blood pressure measurements in healthy subjects using applanation tonometry and sphygmocardiography. J. Hum. Hypertens. 13(9):625–629, 1999.

    Article  Google Scholar 

  26. Sørensen G. L., J. B. Jensen, J. Udesen, and I. K. Holfort. Pulse Wave velocity in the carotid artery. 1(1):1386–1389, 2008.

  27. Tsiachris, D., et al. Subendocardial viability ratio as an index of impaired coronary flow reserve in hypertensives without significant coronary artery stenoses. J. Hum. Hypertens. 26(1):64–70, 2012.

    Article  Google Scholar 

  28. Vermeersch, S. J., B. Dynamics, and L. Society. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 31(19):2338–2350, 2010.

    Article  Google Scholar 

  29. Weissler, A. M., W. S. Harris, and D. Clyde. Systolic time intervals in heart failure in man. Circulation 37:149–159, 1968.

    Article  Google Scholar 

  30. Weissler, A. M., R. G. Peeler, and W. H. Roehll, Jr. Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am. Heart J. 62(3):367–378, 1961.

    Article  Google Scholar 

  31. Wilkinson, I. B., H. MacCallum, L. Flint, J. R. Cockcroft, D. E. Newby, and D. J. Webb. The influence of heart rate on augmentation index and central arterial pressure in humans. J. Physiol. 525(Pt 1):263–270, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Pereira.

Additional information

Associate Editor Ajit P Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, T., Santos, I., Oliveira, T. et al. Characterization of Optical System for Hemodynamic Multi-Parameter Assessment. Cardiovasc Eng Tech 4, 87–97 (2013). https://doi.org/10.1007/s13239-013-0125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0125-y

Keywords

Navigation