Skip to main content
Log in

Evaluation of Rupture Properties of Thoracic Aortic Aneurysms in a Pressure-Imposed Test for Rupture Risk Estimation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Rupture properties of thoracic aortic aneurysms (TAAs) were measured in vitro in a pressure-imposed test to predict the ultimate stress of TAAs from their mechanical behavior in a physiological pressure range. Each quadrilateral (ca. 20 × 20 mm2) specimen of TAAs or porcine thoracic aortas (PTAs) was pressurized from the inner wall until rupture or up to 4500 mmHg, while its deformation was being monitored. In-plane stress σ and strain ε of the specimen were calculated using Laplace’s law and deformations of the markers drawn on the specimen surface, respectively. Ultimate stress σ max and tangent elastic modulus H were determined from the σε curve as its maximum stress and slope, respectively. The tangent elastic modulus H of PTA specimens tended to increase with the increase in σ, while that of TAA specimens tended to reach a plateau in a low-σ region. This tendency was confirmed by fitting a function H = C σ (1 − exp(−σ/τ σ )) to the Hσ relation of specimens: The yielding parameter τ σ was significantly lower in TAAs than PTAs. Furthermore, the logarithm of the parameter τ σ correlated significantly with σ max, for all specimens. These results may indicate that τ σ is one of the candidate indices for rupture risk estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cambria, R. A., P. Gloviczki, A. W. Stanson, K. J. Cherry, Jr., T. C. Bower, J. W. Hallett, Jr., et al. Outcome and expansion rate of 57 thoracoabdominal aortic aneurysms managed nonoperatively. Am. J. Surg. 170(2):213–217, 1995.

    Article  Google Scholar 

  2. Canham, P. B., H. M. Finlay, J. G. Dixon, and S. E. Ferguson. Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy. Anat. Rec. 231(4):579–592, 1991.

    Article  Google Scholar 

  3. Coady, M. A., J. A. Rizzo, G. L. Hammond, D. Mandapati, U. Darr, G. S. Kopf, et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J. Thorac. Cardiovasc. Surg. 113(3):476–491, 1997.

    Article  Google Scholar 

  4. Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56(3):II161–Ii164, 1977.

    Google Scholar 

  5. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36(3):589–597, 2002.

    Article  Google Scholar 

  6. Fukui, T., T. Matsumoto, T. Tanaka, T. Ohashi, K. Kumagai, H. Akimoto, et al. In vivo mechanical properties of thoracic aortic aneurysmal wall estimated from in vitro biaxial tensile test. Biomed. Mater. Eng. 15(4):295–305, 2005.

    Google Scholar 

  7. Groenink, M., S. E. Langerak, E. Vanbavel, E. E. van der Wall, B. J. Mulder, A. C. van der Wal, et al. The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc. Res. 43(2):471–480, 1999.

    Article  Google Scholar 

  8. Johansson, G., U. Markstrom, and J. Swedenborg. Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates. J. Vasc. Surg. 21(6):985–988, 1995.

    Article  Google Scholar 

  9. Kato, Y., T. Matsumoto, K. Kumagai, H. Akimoto, K. Tabayashi, and M. Sato. Development of a simple method to construct finite element models of aortas from MRI images and its application to thoracic aortic aneurysm. JSME Int. J. Ser. C 43(4):787–794, 2000.

    Article  Google Scholar 

  10. Li, W. C., M. H. Yu, H. M. Zhang, H. Q. Wang, G. M. Xi, B. C. Yao, et al. Biomechanical properties of ascending aorta and pulmonary trunk in pigs and humans. Xenotransplantation 15(6):384–389, 2008.

    Article  Google Scholar 

  11. Matsumoto, T., T. Fukui, T. Tanaka, N. Ikuta, T. Ohashi, K. Kumagai, et al. Biaxial tensile properties of thoracic aortic aneurysm tissues. J. Biomech. Sci. Eng. 4(4):518–529, 2009.

    Article  Google Scholar 

  12. Ohashi, T., T. Matsumoto, H. Abe, T. Aoki, and M. Sato. Intramural distribution of local elastic moduli in bovine thoracic aorta measured by pipette aspiration method. J. Cell Eng. 2(1):12–18, 1997.

    Google Scholar 

  13. Ohashi, T., S. Sugita, T. Matsumoto, K. Kumagai, H. Akimoto, K. Tabayashi, et al. Rupture properties of blood vessel walls measured by pressure-imposed test. JSME Int. J. Ser. C 46(4):1290–1296, 2003.

    Article  Google Scholar 

  14. Okamoto, R. J., J. E. Wagenseil, W. R. DeLong, S. J. Peterson, N. T. Kouchoukos, and T. M. Sundt, 3rd. Mechanical properties of dilated human ascending aorta. Ann. Biomed. Eng. 30(5):624–635, 2002.

    Article  Google Scholar 

  15. Raghavan, M. L., D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31(4):760–769, 2000.

    Article  Google Scholar 

  16. Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24(5):573–582, 1996.

    Article  Google Scholar 

  17. Stemper, B. D., N. Yoganandan, M. R. Stineman, T. A. Gennarelli, J. L. Baisden, and F. A. Pintar. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139(2):236–242, 2007.

    Article  Google Scholar 

  18. Sterpetti, A. V., A. Cavallaro, N. Cavallari, P. Allegrucci, A. Tamburelli, F. Agosta, et al. Factors influencing the rupture of abdominal aortic aneurysms. Surg. Gynecol. Obstet. 173(3):175–178, 1991.

    Google Scholar 

  19. Svensjo, S., H. Bengtsson, and D. Bergqvist. Thoracic and thoracoabdominal aortic aneurysm and dissection: an investigation based on autopsy. Br. J. Surg. 83(1):68–71, 1996.

    Article  Google Scholar 

  20. The Population Survey Report 2007–2008 [database on the Internet]. Ministry of Health, Labor and Welfare, Japan. 2008. Accessed March 1, 2010, from http://www.mhlw.go.jp.

  21. The Population Survey Report 2008–2009 [database on the Internet]. Ministry of Health, Labor and Welfare, Japan. 2009. Accessed March 1, 2010, from http://www.mhlw.go.jp.

  22. Wilson, K. A., A. J. Lee, P. R. Hoskins, F. G. Fowkes, C. V. Ruckley, and A. W. Bradbury. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 37(1):112–117, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank patients who allowed us to use their aneurysm specimens. The present study was supported in part by Grants-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (No. 22700467) and the Science and Technology Promotion Adjustment Cost Program from the Japan Science and Technology Agency.

Conflict of interest

The authors have no financial and personal relationships with the other people or organizations that could inappropriately influence our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Matsumoto.

Additional information

Associate Editor Tim McGloughlin oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugita, S., Matsumoto, T., Ohashi, T. et al. Evaluation of Rupture Properties of Thoracic Aortic Aneurysms in a Pressure-Imposed Test for Rupture Risk Estimation. Cardiovasc Eng Tech 3, 41–51 (2012). https://doi.org/10.1007/s13239-011-0067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0067-1

Keywords

Navigation