Skip to main content
Log in

Synaptic variation derived plausible cytogenetical basis of rarity and endangeredness of endemic Mantisia spathulata Schult

  • Original Paper
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

We studied meiosis in Mantisia spathulata, a rare, endangered and endemic rhizomatous horticultural herb showing synaptic variation. Most of pollen mother cells (PMCs) analyzed at either diplotene or diakinesis/metaphase I did not exhibit the expected chromosome associations of 10II, which is indicative of synaptic variation. Seventeen percent of the PMCs have shown normal meiotic pattern while 83% PMCs were with abnormal meiotic behavior of bivalents. A total of 419 bivalents and 1,162 of univalents were recorded with significantly low chiasma frequency (8.38 ± 6.20) and terminalization coefficient of 0.82 only. We recorded in 53.33% PMCs, an anomalous distribution pattern of chromosomes, including unequal distribution and/or presence of laggards in the form of univalents/bivalents resulting in low pollen stainability. We suggest that the imbalanced meiosis with variant synaptic behavior of bivalents recorded in M. spathulata may be responsible for loss of genetic variation and considered as substantial cytogenetical factors leading to the rarity and endangeredness of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–30

Similar content being viewed by others

References

  1. Bhowmik SDS, Kumaria S, Tandon P. Conservation of Mantisia spathulata Schult. and Mantisia wengeri Fischer, two critically endangered and endemic zingibers of Northeast India. Seed Tech Notes. 2010;32:57–62.

    Google Scholar 

  2. Bhowmik SSD, Kumaria S, Rao SR, Tandon P. High frequency plantlet regeneration from rhizomatous buds in Mantisia spathulata Schult. and Mantisia wengeri Fischer and analysis of genetic uniformity using RAPD markers. Indian J Exp Biol. 2009;47:140–6.

    PubMed  CAS  Google Scholar 

  3. Cai X, Xu SS. Meiosis-driven genome variation in plants. Curr Genom. 2007;8:151–61.

    Article  CAS  Google Scholar 

  4. Dam DP, Dam N, Dutta RM. Mantisia saltatoria Sims versus Globba radicalis Roxb. (Zingiberaceae). Bull Bot Surv India. 1997;34:188–93.

    Google Scholar 

  5. Dhesi JS, Gill BS, Sharma HL. Cytological studies of desynaptic stock in pearl millet, Pennisetum typhoides. Cytologia. 1973;38:311–6.

    Google Scholar 

  6. Elliott EA, Yu J, Ashley T, Arnheim N, Flavell RA, Liskay RM. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 1995;82:309–19.

    Article  PubMed  Google Scholar 

  7. Frankham R. Conservation genetics. Annu Rev Genet. 1995;29:305–27.

    Article  PubMed  CAS  Google Scholar 

  8. Frankham R. Genetic management of captive population for reintroduction. In: Serana M, editor. Reintroduction biology of Australian and New Zealand fauna. Chipping Norton, NSW, Australia, Surrey Beatty; 1995. p. 31–34

  9. Ganeshaiah KN. Recovery of endangered and threatened species: developing a national priority list of plant and insects. Curr Sci. 2005;89:599–600.

    Google Scholar 

  10. Hamant O, Ma H, Cande WZ. Genetics of meiotic prophase I in plants. Annu Rev Plant Biol. 2006;57:267–302.

    Article  PubMed  CAS  Google Scholar 

  11. Havekes FWJ, De Jong JH, Heyting C, Ramanna MS. Synapsis and chiasma formation in four meiotic mutants of the tomato Lycopersicon esculentum. Chromosome Res. 1994;2:215–325.

    Article  Google Scholar 

  12. Henderson SA. Temperature and chiasma formation in Schistocera gregaria II. Cytological effects at 40°C and the mechanism of heat induced univalance. Chromosoma. 1962;13:437–63.

    Article  Google Scholar 

  13. John B, Lewis KR. The meiotic system. Protoplasmatologia VI. New York: Springer; 1965.

    Google Scholar 

  14. Kemp B, Boumil RM, Stewart MN, Dawson DS. A role for centromere pairing in meiotic chromosome segregation. Gene Dev. 2004;18:1946–51.

    Article  PubMed  CAS  Google Scholar 

  15. Kitada K, Omura T. Genetic control of meiosis in rice Oryza sativa L. II. Cytogenetical analyses of desynaptic mutants. Jpn J Genet. 1983;58:567–77.

    Article  Google Scholar 

  16. Koykul W, Basrur PK. Synaptic anomalies in fetal bovine oocytes. Genome. 1994;37:83–91.

    Article  PubMed  CAS  Google Scholar 

  17. Kress WJ, Prince LM, Williams KJ. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Amer J Bot. 2002;89:1682–96.

    Article  CAS  Google Scholar 

  18. Kress WJL, Prince M, Hahn WJ, Zimmer EA. Unraveling the evolutionary radiation of the families of the zingiberales using morphological and molecular evidence. Syst Biol. 2001;51:926–44.

    Article  Google Scholar 

  19. Larsen K. Studies on zingiberaceae IV: Caulokaempferia, a new genus. Bot Tidsskr. 1964;60:165–79.

    Google Scholar 

  20. Larsen K, Lock JM, Maas H, Maas PJM. Zingiberaceae. In: Kubitzki K, editor. The families and genera of vascular plants. Berlin: Springer; 1998. p. 474–95.

    Google Scholar 

  21. Lim SN. Cytogenetics and taxonomy of the genus Globba L. (Zingiberaceae) in Malaya 2: cytogenetics. Notes Roy Bot Gard. 1972;31:229–41.

    Google Scholar 

  22. Lim SN. Cytogenetics and taxonomy of the genus Globba L. (Zingiberaceae) in Malaya 3: comparative studies of polyploids. Malays J Sci. 1972;1:19–33.

    Google Scholar 

  23. Lim SN. Cytogenetics and taxonomy of the genus Globba L. (Zingiberaceae) in Malaya 4: distribution in relation to polyploidy. Garden’s Bull. 1972;26:115–26.

    Google Scholar 

  24. Lim SN. Cytogenetics and taxonomy of the genus Globba L. (Zingiberaceae) in Malaya 5: introgressive hybridization in hexaploids. Bot J Linn Soc. 1973;66:143–56.

    Article  Google Scholar 

  25. Lim SN. Meiotic instability in the plant genus Globba. In: Wahrman J, Lewis KR, editors. Chromosomes today, 4. New York: Wiley; 1973. p. 321–34.

    Google Scholar 

  26. Maguire MP, Riess RW. Synaptic defects of asynaptic homozygotes in maize at the electron microscope level. Genome. 1996;39:1194–8.

    Article  PubMed  CAS  Google Scholar 

  27. McKently AH, Adams JB. In vitro propagation of Paronychia chartacea. Hort Sci. 1994;29:921–30.

    Google Scholar 

  28. Navarro J, Templado C, Benet J, Lange R, Rajmil O, Egozcue J. Sperm chromosome studies in an infertile man with partial, complete asynapsis of meiotic bivalents. Hum Reprod. 1990;5:227–9.

    PubMed  CAS  Google Scholar 

  29. Newman MF, Jong K. Cytotaxonomic observations on Mantisia wardii (Zingiberaceae). Notes Roy Bot Gard. 1986;43:493–6.

    Google Scholar 

  30. Pandit MK, Babu CR. The effects of loss of sex in clonal populations of an endangered perennial Coptis teeta (Ranunculaceae). Bot J Linn Soc. 2003;143:47–54.

    Article  Google Scholar 

  31. Pazy B, Plitmann U. Asynapsis in cistanche tubulosa (Orobanchceae). Plant Syst Evol. 1996;201:271–3.

    Article  Google Scholar 

  32. Rahman MA, Yusuf M. Mantisia Salarkhanii Rahman & Yusuf (Zingiberaceae)—a new species from Bangladesh. Saudi J Biol Sci. 2002;9:105–10.

    Google Scholar 

  33. Rao SR. Cytogenetics of Phlox and Vigna. Unpublished PhD thesis. India: University of Jodhpur. 1990

  34. Rao SR, Kumar A. Cytological investigations in a synaptic variant of Anogeissus sericea var. sericea Brandis (Combretaceae), an important hardwood tree of Rajasthan. Bot J Linn Soc. 2003;142:103–9.

    Article  Google Scholar 

  35. Sharma SK, Bisht MS, Pandit MK. Synaptic mutation-driven male sterility in Panax sikkimensis Ban. (Araliaceae) from Eastern Himalaya, India. Plant Syst Evol. 2010;287:29–36.

    Article  Google Scholar 

  36. Sharma SK, Bhowmik SSD, Kumaria S, Tandon P, Rao SR. Low genetic variation as revealed by SPAR methods possibly leads to extinction of two critically-endangered and endemic species of Mantisia. Biol Plant. (in press)

  37. Singh DP, Sharma BL, Kanadia BA. Induced variability in mung bean following two methods of handling M2 populations. Trop Grain Legumes Bull. 1980;19:30–4.

    Google Scholar 

  38. Singh RB, Singh BD, Laxmi V, Singh RM. Meiotic behavior of spontaneous and mutagen induced partial desynaptic plants in pearl millet. Cytologia. 1977;42:41–7.

    Article  Google Scholar 

  39. Singh RJ. Plant cytogenetics. London: CRC; 2004.

    Google Scholar 

  40. Sosnikhina SP, Mikhailova EI, Tikholiz OA, Priyatkina SN, Smirnov VG, Voilokov AV, et al. Genetic collection of meiotic mutants of rye Secale cereal L. Russ J Genet. 2005;41:1071–80.

    Article  CAS  Google Scholar 

  41. Sudha CG, Seeni S. In vitro propagation of Rauwolfia micrantha, a rare medicinal plant. Plant Cell Tissue Organ. 1996;44:243–8.

    Article  Google Scholar 

  42. Takano A. Cytological analyses of 19 taxa in Globba (Zingiberaceae). Acta Phytaxonomica et Geobotanica. 2001;52:65–74.

    Google Scholar 

  43. Takano A, Okada H. Taxonomy of Globba (Zingiberaceae) in Sumatra, Indonesia. Syst Bot. 2003;28:524–46.

    Google Scholar 

  44. Tandon P, Bhowmik SSD, Mao AA, Kumaria S. Rapid in vitro clonal propagation of Mantisia spathulata Schult, a rare and endemic plant of Northeastern India for recovery. Biotechnology. 2007;6:68–71.

    Article  CAS  Google Scholar 

  45. Verma RC, Raina SN. Cytogenetics of Crotalaria VI. Chiasma frequency and position, and univalents behavior in a (partially) asynaptic mutant of C. juncea. Genetica. 1982;58:65–70.

    Article  Google Scholar 

  46. Viera A, Santos JL, Rufas JS. Relationship between incomplete synapsis and chiasma localization. Chromosoma. 2009;118:377–89.

    Article  PubMed  CAS  Google Scholar 

  47. Williams KJ, Kress WJ, Manos PS. The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): appendages do matter. Am J Bot. 2004;91:100–14.

    Article  PubMed  Google Scholar 

  48. Xue DW, Ge XJ, Hao G, Zhang CQ. High genetic diversity in a rare, narrowly endemic primrose species: primula interjacens by ISSR analysis. Acta Botanica Sinica. 2004;46:1163–9.

    CAS  Google Scholar 

  49. Zetka M, Rose A. The genetics of meiosis in Caenorhabditis elegans. Trends Genet. 1995;11:27–31.

    Article  PubMed  CAS  Google Scholar 

  50. Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present work is supported by a grant from the University Grants Commission, Government of India, New Delhi, through University with Potential for Excellence (UPE)—Bioscience program. Sincere thanks are due to Prof. M.S. Bisht and all members of Plant Biotechnology Laboratories, Department of Botany and Department of Biotechnology and Bioinformatics, NEHU, Shillong, for their constant encouragement and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyawada Rama Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

Associations at diplotene/diakinesis in M. spathulata (JPEG 63 kb)

High resolution image (TIFF 926 kb)

S2

Number of associations and chiasmata per cell at diplotene/diakinesis in M. spathulata (JPEG 58 kb)

High resolution image (TIFF 892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Kumaria, S., Tandon, P. et al. Synaptic variation derived plausible cytogenetical basis of rarity and endangeredness of endemic Mantisia spathulata Schult. Nucleus 54, 85–93 (2011). https://doi.org/10.1007/s13237-011-0033-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-011-0033-1

Keywords

Navigation