Skip to main content
Log in

An Effective Replicator Equation for Games with a Continuous Strategy Set

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

The replicator equation for a two-person symmetric game, which has an interval of the real line as strategy space, is extended with a mutation term. Assuming that the distribution of the strategies has a continuous density, a partial differential equation for this density is derived. The equation is analysed for two examples. A connection is made with the canonical equation from adaptive dynamics and the continuous stable strategy criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arfken GB, Weber HJ (2012) Mathematical methods for physicists, 7th edn. Academic Press, Oxford

    Google Scholar 

  2. Bürger R, Bomze IM (1996) Stationary distributions under mutation-selection balance: structure and properties. Adv Appl Prob 28:227–251

  3. Champagnat N, Ferrière R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor Popul Biol 69:297–321

    Article  MATH  Google Scholar 

  4. Cressman R, Hofbauer J (2005) Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Theor Popul Biol 67:47–59

  5. Cressman R, Hofbauer J, Riedel F (2006) Stability of the replicator equation for a single-species with a multi-dimensional trait space. J Theor Biol 239:273–288

    Article  MathSciNet  Google Scholar 

  6. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  MATH  MathSciNet  Google Scholar 

  7. Diekmann O (2004) A beginner’s guide to adaptive dynamics. In: Rudnicki R (ed) Mathematical modelling of population dynamics, vol 63. Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Poland, pp 47–86

    Google Scholar 

  8. Friedman D, Ostrov DN (2013) Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two-player games. J Econ Theory 148(2):743–777

    Article  MATH  MathSciNet  Google Scholar 

  9. van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  10. Kimura M (1965) A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci USA 54:731–736

    Article  MATH  Google Scholar 

  11. Oechssler J, Riedel F (2001) Evolutionary dynamics on infinite strategy spaces. Econ Theory 17:141–162

    Article  MATH  MathSciNet  Google Scholar 

  12. Oechssler J, Riedel F (2002) On the dynamic foundation of evolutionary stability in continuous models. J Econ Theory 107:223–252

    Article  MATH  MathSciNet  Google Scholar 

  13. Ohtsuki H (2011) Evolutionary dynamics of the Nash demand game: a diffusion approach. Dyn Games App 1(3):449–461

    Article  MATH  MathSciNet  Google Scholar 

  14. Pao CV (1992) Nonlinear parabolic and elliptic equations. Plenum Press, New York

    MATH  Google Scholar 

  15. Ruijgrok M, Ruijgrok Th W (2005) Replicator dynamics with mutations for games with a continuous strategy set, arXiv:nlin/0505032

  16. Wei J, Norman E (1964) On the global representations of the solutions of linear differential equations as a product of exponentials. Proc Am Math Soc 15:327–334

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruijgrok.

Appendix

Appendix

We have

$$\begin{aligned} \hat{\rho }(\xi ,\tau )&=n(\tau )e^{g_X X}e^{g_Y Y}e^{g_Z Z}\hat{\rho }_0(\xi ) \nonumber \\&=n(\tau )e^{g_X X}e^{g_Y Y}\sum _{n=0}^{\infty }e^{-2n\tau }a_{n}\phi _n(\xi ) \nonumber \\&=n(\tau )e^{g_X \xi }\sum _{n=0}^{\infty }e^{-2n\tau }a_{n}\phi _n(\xi +g_Y) \nonumber \\&=n(\tau )e^{g_X \xi }e^{-(\xi +g_Y)^2/2}\sum _{n=0}^{\infty }e^{-2n\tau }a_{n}c_n H_n(\xi +g_Y) \nonumber \\&=n(\tau )e^{(-g_X^2+2g_X g_Y)/2 }e^{-(\xi -g_X+g_Y)^2/2}\sum _{n=0}^{\infty }e^{-2n\tau }a_{n}c_n H_n(\xi +g_Y). \end{aligned}$$
(47)

Introducing the variable \(y=\xi -g_X+g_Y\), we can expand \(e^{-2n\tau } H_n(\xi +g_Y)=e^{-2n\tau } H_n(y+g_X)\), using \(H_n(z)=h_{n,n}z^n+h_{n,n-1}z^{n-1}+\ldots +h_{n,0}\):

$$\begin{aligned} e^{-2n\tau } H_n(y+g_X)&=e^{-2n\tau }\big ( H_n(g_X)+y H_n'(g_X)+\ldots +\frac{1}{n!}y^n H_n^{(n)} \big ) \nonumber \\&= h_{n,n}(e^{-2\tau }g_X)^n+h_{n,n-1}e^{-2\tau }(e^{-2\tau }g_X)^{n-1}+\ldots +h_{n,0}e^{-2n\tau } \nonumber \\&\quad +e^{-2n\tau }\sum _{k=1}^n \frac{1}{k!}y^k H_n^{(k)}(g_X) \nonumber \\&=h_{n,n}(e^{-2\tau }g_X)^{n}\big (1+\frac{h_{n,n-1}}{h_{n,n}}(g_X)^{-1}+\ldots +\frac{h_{n,0}}{h_{n,n}}(g_X)^{-n}\big )\nonumber \\&\quad +e^{-2n\tau }\sum _{k=1}^n \frac{1}{k!}y^k H_n^{(k)}(g_X) \nonumber \\&=h_{n,n}(e^{-2\tau }g_X)^{n}\big (1+e^{-2\tau }r_1(\tau )\big )+ R_n(y,\tau ), \end{aligned}$$
(48)

with \(|r_1(\tau )| \le C_1\), for some \(C_1>0\) and all \(\tau >0\). Here we have used that there exists an \(M>0\), such that \(e^{-2\tau }|g_X|\ge M\), for all \(\tau >0\).

The \(L^1\) norm of \(e^{-y^2/2} R_n(y,\tau )\) can be estimated as

$$\begin{aligned} ||e^{-y^2/2} R_n(y,\tau )||_1&=\int _S|e^{-2n\tau }e^{-y^2/2}\sum _{k=1}^n \frac{1}{k!}y^k H_n^{(k)}(g_X)|\, \mathrm{d}y \nonumber \\&\quad \le e^{-2n\tau }\sum _{k=1}^n \frac{1}{k!}H_n^{(k)}(g_X)\int _S|y|^k e^{-y^2/2}\, \mathrm{d}y =e^{-2n\tau }\sum _{k=1}^n \frac{1}{k!}H_n^{(k)}(g_X)\alpha _k \nonumber \\&=h_{n,n}e^{-2n\tau } (g_X)^{(n-1)}\big (1+r_2(\tau )\big )=h_{n,n} e^{-2\tau }(e^{-2\tau }g_X)^{n-1}\big (1+r_2(\tau )\big ), \end{aligned}$$
(49)

where \(|r_2(\tau )| \le C_2\), for some \(C_2>0\) and all \(\tau >0\).

Combining (48) and (49), we find

$$\begin{aligned} e^{-y^2/2}e^{-2n\tau } H_n(y+g_X)&=e^{-y^2/2}\big (h_{n,n}(e^{-2\tau }g_X)^{n}(1+e^{-2\tau }r_1(\tau ))+R(y,\tau )\big ) \nonumber \\&=e^{-y^2/2}\big (h_{n,n}(e^{-2\tau }g_X)^{n}(1+e^{-2\tau }r_1(\tau )) \nonumber \\&\quad +h_{n,n} e^{-2\tau }(e^{-2\tau }g_X)^{n-1}(1+r_2(\tau )\tilde{R_n}(y,\tau ))\big ) \nonumber \\&=e^{-y^2/2}h_{n,n}(e^{-2\tau }g_X)^{n}\big (1+e^{-2\tau }\tilde{R_n}(y,\tau )\big ). \end{aligned}$$
(50)

Here, with some abuse of notation, \(\tilde{R_n}(y,\tau )\) has absorbed in each step all bounded terms, so that we have \(||\tilde{R_n}(y,\tau )||_1<M_n\), for some \(M_n>0\) and all \(\tau >0\). Moreover, since \(\tilde{R_n}(y,\tau )\) is a polynomial in \(y\) whose time-dependent coefficients are either exponential functions in \(\tau \), or are bounded from below by such functions, we have that \(||\frac{\partial }{\partial \tau }\tilde{R_n}(y,\tau )||_1\) is also bounded. We will assume, without proof, that there exists an \(M>0\) such that \(M_n\le M\) for all \(n\), so that there exists a function \(R(y,\tau )\) with \(||\tilde{R_n}(y,\tau )||_1\le ||R(y,\tau )||_1\le M\), such that

$$\begin{aligned} e^{-y^2/2}e^{-2n\tau } H_n(y+g_X) =e^{-y^2/2}h_{n,n}(e^{-2\tau }g_X)^{n}\big (1+e^{-2\tau }R(y,\tau )\big ). \end{aligned}$$
(51)

We then have

$$\begin{aligned} \hat{\rho }(\xi ,\tau )&=n(\tau )e^{(-g_X^2+2g_X g_Y)/2 }\left( \sum _{n=0}^{\infty }a_{n}c_n h_{n,n}\left( e^{-2\tau }g_X\right) ^{n}\right) e^{-\left( \xi -g_X+g_Y\right) ^2/2}\left( 1\!+\!e^{-2\tau }R(\xi ,\tau )\right) . \end{aligned}$$
(52)

Since \(\hat{\rho }(\xi ,\tau )>0\), we must have that \(\sum _{n=0}^{\infty }a_{n}c_n h_{n,n}(e^{-2\tau }g_X)^{n}>0\), for \(\tau \) sufficiently large. The normalization term factor, for large \(\tau \), now becomes

$$\begin{aligned} (n(\tau ))^{-1}&=e^{(-g_X^2+2g_X g_Y)/2 }\sum _{n=0}^{\infty }a_{n}c_n h_{n,n}\left( e^{-2\tau }g_X\right) ^{n} \int _S e^{-(\xi -g_X+g_Y)^2/2}(1+e^{-2\tau }R(\xi ,\tau )\big )\, \mathrm{d}\xi \nonumber \\&=\sqrt{2 \pi } e^{(-g_X^2+2g_X g_Y)/2 }\sum _{n=0}^{\infty }a_{n}c_n h_{n,n}(e^{-2\tau }g_X)^{n}(1+r_3(\tau )), \end{aligned}$$
(53)

with \(|r_3(\tau )|\le C_3\), for some \(C_3>0\) and all \(\tau >0\).

This then yields, as \(\tau \) grows large,

$$\begin{aligned} \hat{\rho }(\xi ,\tau )&=\frac{1}{\sqrt{2 \pi }}e^{-(\xi -g_X+g_Y)^2/2}(1+e^{-2\tau }R(\xi ,\tau )\big ), \end{aligned}$$
(54)

with \(R(\xi ,\tau )\) uniformly bounded in the \(L^1\) norm (and again with some abuse of notation with regards to \(R(\xi ,\tau )\).)

It follows from the construction that \(\int _S \xi R(\xi ,\tau )\, \mathrm{d}\xi \) is bounded, so

$$\begin{aligned} \overline{\xi }&=\int _S \xi \hat{\rho }(\xi ,\tau )\, \mathrm{d}\xi =\int _S \xi \frac{1}{\sqrt{2 \pi }}e^{-(\xi -g_X+g_Y)^2/2}+e^{-2\tau }r(\tau ) \nonumber \\&=g_X-g_Y+e^{-2\tau }r(\tau ), \end{aligned}$$
(55)

where both \(r(\tau )\) and \(r'(\tau )\) are uniformly bounded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruijgrok, M., Ruijgrok, T.W. An Effective Replicator Equation for Games with a Continuous Strategy Set. Dyn Games Appl 5, 157–179 (2015). https://doi.org/10.1007/s13235-014-0118-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-014-0118-y

Keywords

Mathematics Subject Classification

Navigation