Skip to main content
Log in

Evolutionary Games on Star Graphs Under Various Updating Rules

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

Evolutionary game dynamics have been traditionally studied in well-mixed populations where each individual is equally likely to interact with every other individual. Recent studies have shown that the outcome of the evolutionary process might be significantly affected if the population has a non-homogeneous structure. In this paper we study analytically an evolutionary game between two strategies interacting on an extreme heterogeneous graph, the star graph. We find explicit expressions for the fixation probability of mutants, and the time to absorption (elimination or fixation of mutants) and fixation (absorption conditional on fixation occurring). We investigate the evolutionary process considering four important update rules. For each of the update rules, we find appropriate conditions under which one strategy is favoured over the other. The process is considered in four different scenarios: the fixed fitness case, the Hawk–Dove game, the Prisoner’s dilemma and a coordination game. It is shown that in contrast with homogeneous populations, the choice of the update rule might be crucial for the evolution of a non-homogeneous population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68:1923–1944. doi:10.1007/s11538-006-9061-4

    Article  MathSciNet  Google Scholar 

  2. Antal T, Redner S, Sood V (2006) Evolutionary dynamics on degree-heterogeneous graphs. Phys Rev Lett 96. doi:10.1103/PhysRevLett.96.188104

  3. Broom M, Rychtář J (2008) An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc R Soc A 464:2609–2627. doi:10.1098/rspa.2008.0058

    Article  MATH  Google Scholar 

  4. Broom M, Rychtář J, Stadler B (2009) Evolutionary dynamics on small order graphs. J Interdiscip Math 12:129–140

    MATH  Google Scholar 

  5. Broom M, Hadjichrysanthou C, Rychtář J (2010) Evolutionary games on graphs and the speed of the evolutionary process. Proc R Soc A 466:1327–1346. doi:10.1098/rspa.2009.0487

    Article  MATH  Google Scholar 

  6. Fu F, Wang L, Nowak MA, Hauert C (2009) Evolutionary dynamics on graphs: efficient method for weak selection. Phys Rev E 79. doi:10.1103/PhysRevE.79.046707

  7. Fudenberg D, Nowak MA, Taylor C, Imhof LA (2006) Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theor Popul Biol 70:352–363. doi:10.1016/j.tpb.2006.07.006

    Article  MATH  Google Scholar 

  8. Lieberman E, Hauert C, Nowak MA (2005) Evolutionary dynamics on graphs. Nature 433:312–316. doi:10.1038/nature03204

    Article  Google Scholar 

  9. Masuda N (2007) Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc R Soc B 274:1815–1821. doi:10.1098/rspb.2007.0294

    Article  MathSciNet  Google Scholar 

  10. Masuda N (2009) Directionality of contact networks suppresses selection pressure in evolutionary dynamics. J Theor Biol 258:323–334. doi:10.1016/j.jtbi.2009.01.025

    Article  Google Scholar 

  11. Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard University Press, Cambridge

    MATH  Google Scholar 

  12. Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505. doi:10.1038/nature04605

    Article  Google Scholar 

  13. Santos FC, Pacheco JM (2006) A new route to the evolution of cooperation. J Evol Biol 19:726–733. doi:10.1111/j.1420-9101.2005.01063.x

    Article  Google Scholar 

  14. Sood V, Antal T, Redner S (2008) Voter models on heterogeneous networks. Phys Rev E 77. doi:10.1103/PhysRevE.77.041121

  15. Szolnoki A, Perc M, Danku Z (2008) Towards effective payoffs in the prisoner’s dilemma game on scale-free networks. Physica A 387:2075–2082. doi:10.1016/j.physa.2007.11.021

    Google Scholar 

  16. Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259:570–581. doi:10.1016/j.jtbi.2009.03.035

    Article  Google Scholar 

  17. Tomassini M, Pestelacci E, Luthi L (2007) Social dilemmas and cooperation in complex networks. Int J Mod Phys 18:1173–1185. doi:10.1142/S0129183107011212

    Article  MATH  Google Scholar 

  18. Voelkl B (2010) The ‘Hawk–Dove’ game and the speed of the evolutionary process in small heterogeneous populations. Games 1:103–116. doi:10.3390/g1020103

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Broom.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Evolutionary games on star graphs under various updating rules. (PDF 130 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjichrysanthou, C., Broom, M. & Rychtář, J. Evolutionary Games on Star Graphs Under Various Updating Rules. Dyn Games Appl 1, 386–407 (2011). https://doi.org/10.1007/s13235-011-0022-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-011-0022-7

Keywords

Navigation