Skip to main content
Log in

Biomedical applications of silica-based aerogels: a comprehensive review

  • Review
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Silica-based aerogels are the appropriate and well-known porous materials that have become interesting in science and technology, especially in the biomedical community. Silica-based aerogels are prepared from silica gels where the liquid is drawn out of the network structure so that its three-dimensional structure is not disturbed. From a nanotechnologist's perspective, silica aerogels will have a special place in nanotechnology because they have low density, large surface area and nanometer pores, and the size of their pores can be adjusted in different ways. In addition to their prominent features, these materials are very attractive despite the possibility of changing their chemical composition according to the desired applications. Recent advances in silica-based aerogels as well-known porous materials have had a great impact on extensive application in various fields mostly in high-tech science and engineering, and biomedical usages, including environmental control, tissue engineering, cancer diagnosis, cancer therapy, biomarking, and drug delivery. Many vital and key issues in the field of (nano) material applications, especially their usages in biomedicine, should be investigated before clinical applications. Some of these important issues include toxicity, bioactivity, compatibility, and so on. Minimal toxicity and maximum biodegradability are two important future challenging issues related to the interaction of (nano) materials and biological systems. So, it is essential to know how to design and synthesize nanoscale structures for medical and biological applications. Engaging with materials whose characteristics can be customized is very important in the medical field. In this review, we intend to provide up-to-date information on silica-based aerogels and applications in biomedicine. Hence, this review summarizes biomedical applications of silica-based aerogels and discusses the potential toxicity induced by them. The present study focuses on the basic concepts and recent advances in silica-based aerogels in the biomedical field.

Graphical abstract

Biomedical applications of silica-based aerogels

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.A. Esquivel-Castro et al., Porous aerogel and core/shell nanoparticles for controlled drug delivery: a review. Mater. Sci. Eng. C 96, 915–940 (2019)

    CAS  Google Scholar 

  2. D.W. Schaefer, K.D. Keefer, Structure of random porous materials: silica aerogel. Phys. Rev. Lett. 56(20), 2199 (1986)

    CAS  PubMed  Google Scholar 

  3. S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741–741 (1931)

    CAS  Google Scholar 

  4. J.L. Gurav et al., Silica aerogel: synthesis and applications. J. Nanomater. 2010, 1 (2010)

    Google Scholar 

  5. M. Venkataraman, et al., Acoustic properties of aerogel embedded nonwoven fabrics. In Proceedings of the Nanocon (2014), pp. 5–7

  6. L.C. Klein, A review of: “Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing”. In: Material and Manufacturing Process, vol. 9, no. 5, ed. by C. Jeffrey Brinker, G.W. Scherer (Taylor & Francis, United Kingdom, 1994), pp. 1007–1008

  7. L. Hair et al., Low-density resorcinol–formaldehyde aerogels for direct-drive laser inertial confinement fusion targets. J. Vac. Sci. Technol. A Vac. Surf. Films 6(4), 2559–2563 (1988)

    CAS  Google Scholar 

  8. A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102(11), 4243–4266 (2002)

    CAS  PubMed  Google Scholar 

  9. N. Li et al., Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem. Commun. 49(45), 5135–5137 (2013)

    CAS  Google Scholar 

  10. M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels Handbook (Springer, New York, 2011)

    Google Scholar 

  11. Z. Qi et al., Thermal protective performance of aerogel embedded firefighter’s protective clothing. J. Eng. Fibers Fabr. 8(2), 155892501300800220 (2013)

    Google Scholar 

  12. O. Mertah et al., Multifunctional composite aerogels—as micropollutant scavengers. Inorg. Org. Compos. Water Wastewater Treat. 2, 229–266 (2022)

    Google Scholar 

  13. B.S. Kim et al., Semi-rigid polyurethane foam and polymethylsilsesquioxane aerogel composite for thermal insulation and sound absorption. Macromol. Res. 30(4), 245–253 (2022)

    CAS  Google Scholar 

  14. C. Yu, Y.S. Song, Modification of graphene aerogel embedded form-stable phase change materials for high energy harvesting efficiency. Macromol. Res. 30(3), 198–204 (2022)

    CAS  Google Scholar 

  15. C. Yu, J.R. Youn, Y.S. Song, Multiple energy harvesting based on reversed temperature difference between graphene aerogel filled phase change materials. Macromol. Res. 27, 606–613 (2019)

    CAS  Google Scholar 

  16. X. Yu, M. Kota, H.S. Park, Hierarchical structured, nitrogen-incorporated graphene aerogel for high performance supercapacitor. Macromol. Res. 25, 1043–1048 (2017)

    CAS  Google Scholar 

  17. Y.S. Yun, S.Y. Cho, H.-J. Jin, Carbon aerogels based on regenerated silk proteins and graphene oxide for supercapacitors. Macromol. Res. 22, 509–514 (2014)

    CAS  Google Scholar 

  18. H. Maleki et al., Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv. Coll. Interface Sci. 236, 1–27 (2016)

    CAS  Google Scholar 

  19. C. Wan et al., Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem. Eng. J. 359, 459–475 (2019)

    CAS  Google Scholar 

  20. D. Bokov et al., Nanomaterial by sol-gel method: synthesis and application. Adv. Mater. Sci. Eng. 2021, 1–21 (2021)

    Google Scholar 

  21. S. Hamidi et al., Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. Polym. Eng. Sci. 63, 5–21 (2022)

    Google Scholar 

  22. E. Barrios et al., Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11(4), 726 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Ulker, C. Erkey, An emerging platform for drug delivery: aerogel based systems. J. Control Release 177, 51–63 (2014)

    CAS  PubMed  Google Scholar 

  24. S. Smitha et al., Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater. 91(1–3), 286–292 (2006)

    CAS  Google Scholar 

  25. E. Piletska et al., Biomimetic silica nanoparticles prepared by a combination of solid-phase imprinting and Ostwald ripening. Sci. Rep. 7(1), 1–9 (2017)

    CAS  Google Scholar 

  26. A. Handbook, MA Aegerter, N. Leventis and MM Koebel (Springer, New York, 2011)

  27. F. Akhter, S.A. Soomro, V.J. Inglezakis, Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. J. Porous Mater. 28(5), 1387–1400 (2021)

    CAS  Google Scholar 

  28. M. Perdigoto et al., Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J. Colloid Interface Sci. 380(1), 134–140 (2012)

    CAS  PubMed  Google Scholar 

  29. H. Maleki, L. Duraes, A. Portugal, Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J. Phys. Chem. C 119(14), 7689–7703 (2015)

    CAS  Google Scholar 

  30. X. Wu et al., A new rapid and economical one-step method for preparing SiO2 aerogels using supercritical extraction. Powder Technol. 312, 1–10 (2017)

    CAS  Google Scholar 

  31. C. Jiménez-Saelices et al., Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym. 157, 105–113 (2017)

    PubMed  Google Scholar 

  32. H. Maleki, Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300, 98–118 (2016)

    CAS  Google Scholar 

  33. A. Kumar et al., Aerogels and metal–organic frameworks for environmental remediation and energy production. Environ. Chem. Lett. 16(3), 797–820 (2018)

    CAS  Google Scholar 

  34. S. Víctor-Román et al., CNF-reinforced polymer aerogels: influence of the synthesis variables and economic evaluation. Chem. Eng. J. 262, 691–701 (2015)

    Google Scholar 

  35. J. Estella et al., Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater. 102(1–3), 274–282 (2007)

    CAS  Google Scholar 

  36. K.J. Lee et al., Fast synthesis of spherical silica aerogel powders by emulsion polymerization from water glass. ChemistrySelect 3(4), 1257–1261 (2018)

    CAS  Google Scholar 

  37. Y.-F. Lin, J.-W. Kuo, Mesoporous bis (trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chem. Eng. J. 300, 29–35 (2016)

    CAS  Google Scholar 

  38. A.S. Dorcheh, M. Abbasi, Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1–3), 10–26 (2008)

    Google Scholar 

  39. G.G. Kaya, E. Yilmaz, H. Deveci, Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: a comparison study. Adv. Powder Technol. 31(3), 926–936 (2020)

    Google Scholar 

  40. X. Wu et al., A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique. Powder Technol. 323, 310–322 (2018)

    CAS  Google Scholar 

  41. W. Hu et al., Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloids Surf. A 501, 83–91 (2016)

    CAS  Google Scholar 

  42. G.G. Kaya, E. Yilmaz, H. Deveci, Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance. Compos. B Eng. 150, 1–6 (2018)

    Google Scholar 

  43. K. Labani Motlagh et al., Investigating the effects of graphene content and application method on surface properties of vinyl ester/silica aerogel coatings. Macromol. Res. 30(5), 334–341 (2022)

    CAS  Google Scholar 

  44. S.Y. Kim et al., Silica aerogel/polyimide composites with preserved aerogel pores using multi-step curing. Macromol. Res. 22, 108–111 (2014)

    CAS  Google Scholar 

  45. P. Herman, I.N. Fábián, J.Z. Kalmár, Mesoporous silica–gelatin aerogels for the selective adsorption of aqueous Hg (II). ACS Appl. Nano Mater. 3(1), 195–206 (2019)

    Google Scholar 

  46. M. Paljevac et al., Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J. Supercrit. Fluids 43(1), 74–80 (2007)

    CAS  Google Scholar 

  47. L. Xiao et al., Stable low-loss optical nanofibres embedded in hydrophobic aerogel. Opt. Express 19(2), 764–769 (2011)

    CAS  PubMed  Google Scholar 

  48. H.A. Farrag et al., Natural outer membrane permeabilizers boost antibiotic action against irradiated resistant bacteria. J. Biomed. Sci. 26(1), 1–14 (2019)

    CAS  Google Scholar 

  49. B. Ear, H.C. Resource, Licence: CC BY-NC-SA 3.0 IGO, vol. 28 (2020) p. 2020.

  50. W.H. Organization, 2019 antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline (2019)

  51. A. Hammad et al., From phenylthiazoles to phenylpyrazoles: broadening the antibacterial spectrum toward carbapenem-resistant bacteria. J. Med. Chem. 62(17), 7998–8010 (2019)

    CAS  PubMed  Google Scholar 

  52. H.M. Yadav, J.-S. Kim, S.H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J. Chem. Eng. 33(7), 1989–1998 (2016)

    CAS  Google Scholar 

  53. M. Moritz, M. Geszke-Moritz, The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 228, 596–613 (2013)

    CAS  Google Scholar 

  54. T.E. Cloete, Resistance mechanisms of bacteria to antimicrobial compounds. Int. Biodeterior. Biodegrad. 51(4), 277–282 (2003)

    CAS  Google Scholar 

  55. A. Toma, S. Deyno, Overview on mechanisms of antibacterial resistance. Int. J. Res. Pharm. Biosci. 2(1), 27–36 (2015)

    Google Scholar 

  56. E. Peterson, P. Kaur, Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 9, 2928 (2018)

    PubMed  PubMed Central  Google Scholar 

  57. N. Perkas et al., Ultrasound-assisted coating of nylon 6, 6 with silver nanoparticles and its antibacterial activity. J. Appl. Polym. Sci. 104(3), 1423–1430 (2007)

    CAS  Google Scholar 

  58. S. Zhu et al., Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release. Mater. Chem. Phys. 126(1–2), 357–363 (2011)

    CAS  Google Scholar 

  59. N.A. Ochekpe, P.O. Olorunfemi, N.C. Ngwuluka, Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop. J. Pharm. Res. 8(3), 275–285 (2009)

    CAS  Google Scholar 

  60. G. Wyszogrodzka et al., Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov. Today 21(6), 1009–1018 (2016)

    CAS  PubMed  Google Scholar 

  61. Q. Lei et al., Sol–gel-based advanced porous silica materials for biomedical applications. Adv. Funct. Mater. 30(41), 1909539 (2020)

    CAS  Google Scholar 

  62. M.N. Seleem et al., Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrob. Agents Chemother. 53(10), 4270–4274 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. S. Radin et al., Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J. Biomed. Mater. Res. 57(2), 313–320 (2001)

    CAS  PubMed  Google Scholar 

  64. Y.N. Slavin et al., Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1), 1–20 (2017)

    Google Scholar 

  65. J.K. Oh et al., Hydrophobically-modified silica aerogels: novel food-contact surfaces with bacterial anti-adhesion properties. Food Control 52, 132–141 (2015)

    CAS  Google Scholar 

  66. O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Technol. 205(1), 219–223 (2010)

    CAS  Google Scholar 

  67. J.K. Oh et al., Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment. Nanotechnology 27(8), 085705 (2016)

    PubMed  Google Scholar 

  68. K. Nakanishi, Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). Sol Gel Handb. 205, 745–766 (2015)

    Google Scholar 

  69. S. Cardea, P. Pisanti, E. Reverchon, Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J. Supercrit. Fluids 54(3), 290–295 (2010)

    CAS  Google Scholar 

  70. M. Martins et al., Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 106, 152–159 (2015)

    CAS  Google Scholar 

  71. V.B. Sardar, et al., Developments in silicone material for biomedical applications—A review. In 14th international conference on humanizing work and work environment. Punjab, India (2016)

  72. N.S. Sani et al., Effect of mass concentration on bioactivity and cell viability of calcined silica aerogel synthesized from rice husk ash as silica source. J. Sol Gel. Sci. Technol. 82(1), 120–132 (2017)

    CAS  Google Scholar 

  73. N.S. Sani et al., Effect of mass concentration on bioactivity and cell viability of calcined silica aerogel synthesized from rice husk ash as silica source. J. Sol Gel. Sci. Technol. 82, 120–132 (2017)

    CAS  Google Scholar 

  74. J. Ge et al., Silica aerogel improves the biocompatibility in a poly–caprolactone composite used as a tissue engineering scaffold. Int. J. Polym. Sci. 2013, 1–7 (2013)

    Google Scholar 

  75. R.R. Mallepally et al., Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed. Mater. 10(3), 035002 (2015)

    PubMed  Google Scholar 

  76. B. Ding et al., Facile preparation of robust and biocompatible chitin aerogels. J. Mater. Chem. 22(12), 5801–5809 (2012)

    CAS  Google Scholar 

  77. M.V. Reyes-Peces et al., Chitosan-GPTMS-silica hybrid mesoporous aerogels for bone tissue engineering. Polymers 12(11), 2723 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. H. Maleki et al., Mechanically strong silica-silk fibroin bioaerogel: a hybrid scaffold with ordered honeycomb micromorphology and multiscale porosity for bone regeneration. ACS Appl. Mater. Interfaces 11(19), 17256–17269 (2019)

    CAS  PubMed  Google Scholar 

  79. C. Hegedűs et al., The effect of heat treatment of β-tricalcium phosphate-containing silica-based bioactive aerogels on the cellular metabolism and proliferation of MG63 cells. Biomedicines 10(3), 662 (2022)

    PubMed  PubMed Central  Google Scholar 

  80. N.S. Sani et al., Preparation and characterization of hydroxyapatite incorporated silica aerogel and its effect on normal human dermal fibroblast cells. J. Sol Gel. Sci. Technol. 90(2), 422–433 (2019)

    CAS  Google Scholar 

  81. P. Reséndiz-Hernández, et al.. Bioactive and biocompatible silica/pseudowollastonite aerogels. In Advances in Science and Technology (Trans Tech Publications, 2014)

  82. F. Sabri et al., Histological evaluation of the biocompatibility of polyurea crosslinked silica aerogel implants in a rat model: a pilot study. PLoS ONE 7(12), e50686 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. M.R. Ayers, A.J. Hunt, Synthesis and properties of chitosan–silica hybrid aerogels. J. Non-Cryst. Solids 285(1–3), 123–127 (2001)

    CAS  Google Scholar 

  84. I. Lazar et al., Synthesis and study of new functionalized silica aerogel poly (methyl methacrylate) composites for biomedical use. Polym. Compos. 36(2), 348–358 (2015)

    CAS  Google Scholar 

  85. M.R. Sala et al., Enhanced neurite outgrowth on electrically conductive carbon aerogel substrates in the presence of an external electric field. Soft Matter 17(17), 4489–4495 (2021)

    Google Scholar 

  86. F. Sabri et al., Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. PLoS ONE 7(3), e33242 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. K.J. Lynch, O. Skalli, F. Sabri, Investigation of surface topography and stiffness on adhesion and neurites extension of PC12 cells on crosslinked silica aerogel substrates. PLoS ONE 12(10), e0185978 (2017)

    PubMed  PubMed Central  Google Scholar 

  88. K.J. Lynch, O. Skalli, F. Sabri, Growing neural PC-12 cell on crosslinked silica aerogels increases neurite extension in the presence of an electric field. J. Funct. Biomater. 9(2), 30 (2018)

    PubMed  PubMed Central  Google Scholar 

  89. F. Sabri et al., Novel technique for repair of severed peripheral nerves in rats using polyurea crosslinked silica aerogel scaffold. J. Investig. Surg. 27(5), 294–303 (2014)

    Google Scholar 

  90. J. Lin et al., A review of recent progress on the silica aerogel monoliths: synthesis, reinforcement, and applications. J. Mater. Sci. 56(18), 10812–10833 (2021)

    CAS  Google Scholar 

  91. M. Mohammadian et al., Synthesis and characterization of silica aerogel as a promising drug carrier system. J. Drug Deliv. Sci. Technol. 44, 205–212 (2018)

    CAS  Google Scholar 

  92. I. Smirnova, J. Mamic, W. Arlt, Adsorption of drugs on silica aerogels. Langmuir 19(20), 8521–8525 (2003)

    CAS  Google Scholar 

  93. U. Guenther, I. Smirnova, R.H. Neubert, Hydrophilic silica aerogels as dermal drug delivery systems–Dithranol as a model drug. Eur. J. Pharm. Biopharm. 69(3), 935–942 (2008)

    CAS  PubMed  Google Scholar 

  94. D. Lovskaya, A. Lebedev, N. Menshutina, Aerogels as drug delivery systems: in vitro and in vivo evaluations. J. Supercrit. Fluids 106, 115–121 (2015)

    CAS  Google Scholar 

  95. N. Murillo-Cremaes et al., Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J. Supercrit. Fluids 73, 34–42 (2013)

    CAS  Google Scholar 

  96. P. Veres et al., Mechanism of drug release from silica-gelatin aerogel—relationship between matrix structure and release kinetics. Colloids Surf. B 152, 229–237 (2017)

    CAS  Google Scholar 

  97. G. Nagy et al., Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth. Int. J. Pharm. 558, 396–403 (2019)

    CAS  PubMed  Google Scholar 

  98. G. Caputo, M. Scognamiglio, I. De Marco, Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide. Chem. Eng. Res. Des. 90(8), 1082–1089 (2012)

    CAS  Google Scholar 

  99. S.K. Rajanna, M. Vinjamur, M. Mukhopadhyay, Robust silica aerogel microspheres from rice husk ash to enhance the dissolution rate of poorly water-soluble drugs. Chem. Eng. Commun. 204(2), 249–253 (2017)

    CAS  Google Scholar 

  100. H.D. Follmann et al., Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J. Colloid Interface Sci. 567, 92–102 (2020)

    CAS  PubMed  Google Scholar 

  101. M. Kéri et al., Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels–Implications in drug delivery. Acta Biomater. 105, 131–145 (2020)

    PubMed  Google Scholar 

  102. M. Alnaief et al., A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater. 160, 167–173 (2012)

    CAS  Google Scholar 

  103. S. Giray et al., Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J. Biomed. Mater. Res. Part A 100(5), 1307–1315 (2012)

    Google Scholar 

  104. A. Jabbari-Gargari et al., Carboxylic acid decorated silica aerogel nanostructure as drug delivery carrier. Microporous Mesoporous Mater. 323, 111220 (2021)

    CAS  Google Scholar 

  105. Z. Bahrami et al., Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: adsorption and release study. Mater. Sci. Eng. C 49, 66–74 (2015)

    CAS  Google Scholar 

  106. M. Afrashi et al., Novel multi-layer silica aerogel/PVA composite for controlled drug delivery. Mater. Res. Express 6(9), 095408 (2019)

    CAS  Google Scholar 

  107. M. Alnaief, I. Smirnova, Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J. Non-Cryst. Solids 356(33–34), 1644–1649 (2010)

    CAS  Google Scholar 

  108. P. Veres et al., Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int. J. Pharm. 496(2), 360–370 (2015)

    CAS  PubMed  Google Scholar 

  109. E. Tiryaki et al., Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: dextran and dextran aldehyde coated silica aerogels. J. Drug Deliv. Sci. Technol. 56, 101517 (2020)

    CAS  Google Scholar 

  110. A. Jabbari-Gargari et al., Ambient pressure drug loading on trimethylchlorosilane silylated silica aerogel in aspirin controlled-release system. Chem. Eng. Commun. 209, 1–14 (2021)

    Google Scholar 

  111. N. Ganonyan et al., Gradual hydrophobization of silica aerogel for controlled drug release. RSC Adv. 11(14), 7824–7838 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. J.P. Vareda et al., Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles. Environ. Sci. Nano 8(5), 1177–1195 (2021)

    CAS  Google Scholar 

  113. M. Ghazalian et al., Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf. A 636, 128163 (2022)

    CAS  Google Scholar 

  114. S. Rashedi et al., Co-electrospun poly (lactic acid)/gelatin nanofibrous scaffold prepared by a new solvent system: morphological, mechanical and in vitro degradability properties. Int. J. Polym. Mater. Polym. Biomater. 70(8), 545–553 (2021)

    CAS  Google Scholar 

  115. P. Mosallanezhad et al., Fabrication and characterization of polycaprolactone/chitosan nanofibers containing antibacterial agents of curcumin and ZnO nanoparticles for use as wound dressing. Front. Bioeng. Biotechnol. 10, 1–14 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FSJ and MZK wrote the main manuscript text and SH and MRS prepared all documents. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Samin Hamidi or Monireh Zamani-Kalajahi.

Ethics declarations

Conflict of interest

Declared none.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahed, F.S., Hamidi, S., Zamani-Kalajahi, M. et al. Biomedical applications of silica-based aerogels: a comprehensive review. Macromol. Res. 31, 519–538 (2023). https://doi.org/10.1007/s13233-023-00142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00142-9

Keywords

Navigation