Skip to main content
Log in

Effective Reinforcement of Melamine-functionalized WS2 Nanosheets in Epoxy Nanocomposites at Low Loading via Enhanced Interfacial Interaction

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We present a two-dimensional tungsten disulfide (WS2)-based material as a reinforcement additive to produce thermally stable, mechanically strong, and light-weight epoxy (EP) composites. An aqueous melamine solution was used to exfoliate the bulk WS2 into nanosheets while simultaneously functionalizing them to obtain melamine-functionalized WS2 (N-WS2) nanosheets. These non-covalently functionalized N-WS2 nanosheets were used as toughening agents for epoxy composites. The contents of the N-WS2 nanosheets were maintained at below 1 wt%. The effect of functionalization on the interfacial properties of EP composites was investigated in terms of the interfacial interactions between the EP and the nanosheets. The results demonstrated that the surface free energy of EP composites increased significantly after the incorporation of N-WS2 nanosheets into the EP matrix and further increased with the increased loading of N-WS nanosheets up to a maximal value of 54.38 mJ-m2 for the composite containing 0.18 wt% N-WS2 nanosheets, suggesting a stronger interfacial interaction between the EP and N-WS2 nanosheets. A gradual decrease in the surface free energy of the EP composites was observed at higher loadings, which might be attributed to the aggregation of N-WS2 nanosheets within the matrix or excessive bonding of the sheets with one another rather than with the EP matrix due to their larger Van der Waals forces and their large surface area. The mechanical properties of the EP composites were analyzed and demonstrated 55%, 101%, 44%, and 15% improvements in the fracture toughness, fracture energy, flexural strength, and flexural modulus, respectively, for the composite containing 0.18 wt% N-WS2 nanosheets. Moreover, the composites displayed increased glass transition temperatures and better thermal stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kumar, B. G. Falzon, J. Kun, E. Wilson, G. Graninger, and S. C. Hawkins, Compos. Part A Appl. Sci. Manuf., 131, 105801 (2020).

    Article  CAS  Google Scholar 

  2. R. Rang, Z. Zhang, L. Guo, J. Cui, Y. Chen, X. Hou, B. Wang, C.-T. Lin, N. Jiang, and J. Yu, Sci. Rep., 9, 9135 (2019).

    Article  CAS  Google Scholar 

  3. D. Yuan, H. Guo, K. Ke, and I. Manas-Zloczower, Compos. Part A Appl. Sci. Manuf., 132, 105837 (2020).

    Article  CAS  Google Scholar 

  4. J. Seo, W. Jang, and H. Han, Macromol. Res., 15, 10 (2007).

    Article  CAS  Google Scholar 

  5. H. Shi, W. Liu, M. Yang, X. Liu, Y. Xie, and Z. Wang, Macromol. Res., 27, 412 (2019).

    Article  CAS  Google Scholar 

  6. J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano, and E. V. Barrera, Adv. Funct. Mater., 14, 643 (2004).

    Article  CAS  Google Scholar 

  7. L.-C. Hao, Z.-X. Li, F. Sun, K. Ding, X.-N. Zhou, Z.-X. Song, Z.-Q. Shi, J.-F. Yang, and B. Wang, Compos. Part A Appl. Sci. Manuf., 127, 105648 (2019).

    Article  CAS  Google Scholar 

  8. J. Chen, Y.-J. Dong, F.-L. Jin, and S.-J. Park, Macromol. Res., 27, 10 (2019).

    Article  CAS  Google Scholar 

  9. M. F. DiBerardino and R. A. Pearson, in Toughening of Plastics, American Chemical Society, 2000, Vol. 759, pp 213–229.

  10. L. Liu and J. C. Grunlan, Adv. Funct Mater., 17, 2343 (2007).

    Article  CAS  Google Scholar 

  11. L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu, F. Chen, and Q. Fu, ACS Appl. Mater. Interfaces, 4, 4398 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. A. K. Yadav, S. Banerjee, R. Kumar, K. K. Kar, J. Ramkumar, and K. Dasgupta, ACS Appl. Nano Mater., 1, 4332 (2018).

    Article  CAS  Google Scholar 

  13. N. M. Han, Z. Wang, X. Shen, Y. Wu, X. Liu, Q. Zheng, T.-H. Kim, J. Yang, and J.-K. Kim, ACS Appl. Mater. Interfaces, 10, 6580 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. C. M. Vu and Q.-V. Bach, Macromol. Res., 28, 826 (2020).

    Article  CAS  Google Scholar 

  15. K. Malekshahinezhad, A. Ahmadi-khaneghah, and H. Behniafar, Macromol. Res., 28, 567 (2019).

    Article  CAS  Google Scholar 

  16. Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu, and H. Wu, Compos. Part A Appl. Sci. Manuf., 118, 302 (2019).

    Article  CAS  Google Scholar 

  17. Y. Hu, G. Du, and N. Chen, Compos. Sci. Technol., 124, 36 (2016).

    Article  CAS  Google Scholar 

  18. J. Tarrío-Saavedra, J. López-Beceiro, S. Naya, and R. Artiaga, Polym. Degrad. Stab, 93, 2133 (2008).

    Article  CAS  Google Scholar 

  19. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, Carbon, 44, 1898 (2006).

    Article  CAS  Google Scholar 

  20. C. M. Vu, Q.-V. Bach, H. T. Vu, D. D. Nguyen, B. X. Kien, and S. W. Chang, Macromol. Res, 28, 33 (2020).

    Article  CAS  Google Scholar 

  21. B. Ramezanzadeh, Z. Haeri, and M. Ramezanzadeh, Chem. Eng. J., 303, 511 (2016).

    Article  CAS  Google Scholar 

  22. Y. T. Park, Y. Qian, C. Chan, T. Suh, M. G. Nejhad, C. W. Macosko, and A. Stein, Adv. Funct Mater., 25, 575 (2015).

    Article  CAS  Google Scholar 

  23. H. Mahmood, L. Vanzetti, M. Bersani, and A. Pegoretti., Compos. Part A Appl Sci. Manuf., 107, 112 (2018).

    Article  CAS  Google Scholar 

  24. X.-J. Shen, X.-Q. Pei, Y. Liu, and S.-Y. Fu, Compos. Part B-Eng, 57, 120 (2014).

    Article  CAS  Google Scholar 

  25. O. Eksik, J. Gao, S. A. Shojaee, A. Thomas, P. Chow, S. F. Bartolucci, D. A. Lucca, and N. Koratkar, ACS Nano, 8, 5282 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. S. R. Madeshwaran, R. Jayaganthan, R. Velmurugan, N. K. Gupta, and A. V. Manzhirov, J. Phys.: Conf. Series, 991, 012054 (2018).

    Google Scholar 

  27. M. Sahu, L. Narashimhan, O. Prakash, and A. M. Raichur, ACS Appl. Mater. Interfaces, 9, 14347 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. A. Buchman, H. Dodiuk-Kenig, A. Dotan, R. Tenne, and S. Kenig, J. Adhes. Sci. Technol, 23, 753 (2009).

    Article  Google Scholar 

  29. J. Sidhu, G. Lathkar, and S. Sharma, Adv. Mater. Res, 875, 288 (2014).

    Article  Google Scholar 

  30. E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, R. Tenne, and H. D. Wagner, J. Adhes. Sci. Technol., 25, 1603 (2011).

    Article  CAS  Google Scholar 

  31. Z. Chen, H. Yan, L. Guo, L. Li, P. Yang, and B. Liu, Compos. Part A Appl. Sci. Manuf, 121, 18 (2019).

    Article  CAS  Google Scholar 

  32. S.-K. Kim, J. J. Wie, Q. Mahmood, and H. S. Park, Nanoscale, 6, 7430 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. D. Haba, A. J. Brunner, and G. Pinter, Compos. Sci. Technol., 119, 55 (2015).

    Article  CAS  Google Scholar 

  34. X. Feng, X. Wang, W. Cai, N. Hong, Y. Hu, and K. M. Liew, J. Hazard. Mater., 320, 252 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. B. Chen, B.-J. Ni, W.-T. Liu, Q.-Y. Ye, S.-Y. Liu, H.-X. Zhang, and K.-B. Yoon, RSC Adv., 8, 20450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Y. Zhang and Y. Gu, Comput Mater. Sci., 71, 197 (2013).

    Article  CAS  Google Scholar 

  37. D. Wang, L. Song, K. Zhou, X. Yu, Y. Hu, and J. Wang, J. Mater. Chem. A, 3, 14307 (2015).

    Article  CAS  Google Scholar 

  38. V. K. Singh, H. Mishra, R. Ali, S. Umrao, R. Srivastava, S. Abraham, A. Misra, V. N. Singh, H. Mishra, R. S. Tiwari, and A. Srivastava, ACS Appl. Nano Mater., 2, 566 (2018).

    Article  CAS  Google Scholar 

  39. Y. Yan, C. Zhang, W. Gu, C. Ding, X. Li, and Y. Xian, J. Phys. Chem. C, 120, 12170 (2016).

    Article  CAS  Google Scholar 

  40. L. Lin, Y. Xu, S. Zhang, I. M. Ross, A. C. M. Ong, and D. A. Allwood, ACS Nano, 7, 8214 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. J. Yi, X. She, Y. Song, M. Mao, K. Xia, Y. Xu, Z. Mo, J. Wu, H. Xu, and H. Li, Chem. Eng. J., 335, 282 (2018).

    Article  CAS  Google Scholar 

  42. G.-Q. Han, Y.-R. Liu, W.-H. Hu, B. Dong, X. Li, Y.-M. Chai, Y.-Q. Liu, and C.-G. Liu, Mater. Chem Phys., 167, 271 (2015).

    Article  CAS  Google Scholar 

  43. S. Luo, S. Dong, C. Lu, C. Yu, Y. Ou, L. Luo, J. Sun, and J. Sun, J. Colloid Interface Sci., 513, 389 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, H. D. Wagner, A. Zak, A. Moshkovith, L. Rapoport, and R. Tenne, Sens. Transducers, 12, 53 (2011).

    CAS  Google Scholar 

  45. W. A. Zisman, Ind. Eng. Chem, 55, 18 (1963).

    Article  CAS  Google Scholar 

  46. C. J. Van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev, 88, 927 (1988).

    Article  CAS  Google Scholar 

  47. D. K. Owens and R. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).

    Article  CAS  Google Scholar 

  48. W.-S. Kang K. Y. Rhee, and S.-J. Park, Compos. Part B-Eng, 114, 175 (2017).

    Article  CAS  Google Scholar 

  49. A. W. Neumann, R. J. Good, C. J. Hope, and M. Sejpal, J. Colloid Interface Sci., 49, 291 (1974).

    Article  CAS  Google Scholar 

  50. S. Riaz and S.-J. Park, Materials, 12, 1354 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  51. R. N. Shimizu and N. R. Demarquette, J. Appl. Polym. Sci., 76, 1831 (2000).

    Article  CAS  Google Scholar 

  52. C. Ozcan and N. Hasirci, J. Appl. Polym. Sci., 108, 438 (2008).

    Article  CAS  Google Scholar 

  53. C. Gill and J. Sidhu, Int. J. Mater. Sci. Technol, 6, 21 (2016).

    Google Scholar 

  54. M. Shaikh, G. Pawar, and J. Sidhu, Int J. Sci. Res. (IJSR), 2, 462 (2013).

    Google Scholar 

  55. D. Haba, A. J. Brunner, M. Barbezat, D. Spetter, W. Tremel, and G. Pinter, Eur. Polym. J, 84, 125 (2016).

    Article  CAS  Google Scholar 

  56. M. Shneider, H. Dodiuk, R. Tenne, and S. Kenig, Polym. Eng. Sci., 53, 2624 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Additional information

Supporting information

Information is available regarding thermogravimetric analysis and degradation analysis, DSC analysis of EP/NWS2 composites, mechanical properties calculations detail, and calculated surface free energy, polar component, and London dispersive components of all the EP/NWS2 composites. The materials are available via the internet at http://www.springer.com/13233.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by Korea Evaluation institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083586, Development of petroleum based graphite fibers with ultra-high thermal conductivity] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). and secured mass production by developing core material technology for localizing latent hardener for low temperature fast curing) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Technological Innovation R&D Program (S2829590) funded by the Small and Medium Business Administration (SMBA, Korea).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Park, SJ. Effective Reinforcement of Melamine-functionalized WS2 Nanosheets in Epoxy Nanocomposites at Low Loading via Enhanced Interfacial Interaction. Macromol. Res. 28, 1116–1126 (2020). https://doi.org/10.1007/s13233-020-8151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8151-8

Keywords

Navigation