Skip to main content
Log in

A New Method of Gelatin Modified Collagen and Viscoelastic Study of Gelatin-Collagen Composite Hydrogel

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Pure collagen materials are expensive with poor mechanical properties, which need modifications in most cases. As the degradation product of collagen, gelatin is cheap, degradable and biocompatible, but few literatures have reported the research about gelatin-collagen composite materials. This is because gelatin and collagen have different soluble temperatures—gelatin is soluble in hot water (≥30 °C) and swells in cold water. However, a low temperature (2–10 °C) is required to prepare and store collagen solution, and neutral collagen solution denatures quickly above the room temperature. In this study, gelatin was ground into powders and swelled in neutral bovine tendon pepsin-soluble collagen solution (BPSC) to form a homogeneous gelatin-collagen mixture, in light of the swelling characteristics of gelatin in cold water. The assembly properties and gel properties of this composite material were further studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) test results showed that the bovine tendon collagen had typical type-I collagen structural characterizations with two α chains of about 100 kDa and one β chain of about 200 kDa; while the SDS-PAGE pattern of gelatin displayed bands continuously distributed from 30 to 200 kDa. Amino acid composition analysis test indicated that the content of polar amino acids and the sum of acidic and base amino acids for gelatin were higher than that of BPSC. Studies on gel properties demonstrated that gelatin-collagen mixed solution had collagen-like assembly characteristics and assembly kinetics. The moduli of the assembled gel at 35 °C were equivalent to that of pure bovine tendon collagen system; moreover, the system moduli didn’t change with time with elastic moduli (G′) of about 40 Pa. However, at 25 °C, the moduli of gelatin-collagen composite hydrogel increased with the extension of time, its G′ increased about 18 times within 8 h, and the ratio of elastic modulus to viscous modulus (G″) increased 4.6 times, showing a significant aging effect of structural strength. Meanwhile, the mechanical strength of the composite hydrogel was also regulated by temperature—the gel was highly elastic (G′≈3,000 Pa, G′>>G″) at a low temperature (5 °C); as the temperature rose, the system moduli gradually decreased and the elastic gel transformed into waterlike fluid at 50 °C little by little. What’s more, gelatin-collagen composite hydrogel also had reversible sol-gel performances and self-healing capability similar to the gelatin hydrogel. This novel preparation method for preparing composite materials and the resultant composite hydrogel are expected to be used in the fields of natural food gels, injectable hydrogels, cell scaffolds, drug sustained-release materials and so on, and improve and promote the processing performances, price and large-scale production of collagen-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Duan, W. Liu, Z. Tian, C. Li, and G. Li, Int J. Biol. Macromol., 69, 482 (2014).

    Article  CAS  Google Scholar 

  2. Y. Kawaguchi, E. Kondo, N. Kitamura, K. Arakaki, Y. Tanaka, M. Munekata, N. Nagai, and K. Yasuda, J. Mater. Sci. Mater. Med., 22, 397 (2011).

    Article  CAS  Google Scholar 

  3. S. Chen, T. Ikoma, N. Ogawa, S. Migita, H. Kobayashi, and N. Hanagata, Sci. Technol. Adv. Mater., 11, 035001 (2010).

    Article  Google Scholar 

  4. V. Ferraro, B. Gaillard-Martinie, T. Sayd, C. Chambon, M. Anton, and V. Santé-Lhoutellier, Int. J. Biol. Macromol., 97, 55 (2017).

    Article  CAS  Google Scholar 

  5. B. Wei, Z. Zhai, H. Wang, J. Zhang, C. Xu, Y. Xu, L. He, and D. Xie, J. Agr. Food Chem., 66, 9080 (2018).

    Article  CAS  Google Scholar 

  6. M. Cassagne, K. Pierné, S. D. Galiacy, M. P. Asfaux-Marfaing, P. Fournié, and F. Malecaze, J. Refract. Surg., 33, 290 (2017).

    Article  Google Scholar 

  7. L. Dai, J. Nan, X. Tu, L. He, B. Wei, C. Xu, Y. Xu, S. Li, H. Wang, and J. Zhang, Cellulose, 26, 6713 (2019).

    Article  CAS  Google Scholar 

  8. Z. Zhai, H. Wang, B. Wei, P. Yu, C. Xu, L. He, J. Zhang, and Y. Xu, Macromol. Res., 26, 609 (2018).

    Article  CAS  Google Scholar 

  9. X. Tu, X. Chen, Y. Peng, J. Nan, B. Wei, L. He, C. Xu, Y. Xu, D. Xie, J. Zhang, and H. Wang, Macromol. Res., 26, 1233 (2018).

    Article  CAS  Google Scholar 

  10. J. Zhang, B. Wei, L. He, C. Xu, D. Xie, K.-W. Paik, and H. Wang, Macromol. Res., 25, 1105 (2017).

    Article  CAS  Google Scholar 

  11. A. A. Mariod and H. F. Adam, Acta Sci. Pol., Technol. Aliment, 12, 135 (2013).

    CAS  Google Scholar 

  12. A. J. A. M. Ribeiro, A. C. Gomes, and A. M. Cavaco-Paulo, J. Biomed. Mater. Res. B, 100, 2269 (2012).

    Article  Google Scholar 

  13. G. Vozzi, C. Corallo, S. Carta, M. Fortina, F. Gattazzo, M. Galletti, and N. Giordano, J. Biomed. Mater. Res., Part A, 102, 1415 (2014).

    Article  CAS  Google Scholar 

  14. J. Nan, M. Zou, H. Wang, C. Xu, J. Zhang, B. Wei, L. He, and Y. Xu, Int. J. Biol. Macromol., 111, 200 (2018).

    Article  CAS  Google Scholar 

  15. B. Wei, J. Nan, Y. Jiang, H. Wang, J. Zhang, L. He, C. Xu, Z. Zhai, D. Xie, and S. Xie, Food Biophys., 12, 422 (2017).

    Article  Google Scholar 

  16. W. M. Kulicke and R. S. Porter, Rheol. Acta, 19, 601 (1980).

    Article  CAS  Google Scholar 

  17. J. Yang, H. Wang, L. He, B. Wei, C. Xu, Y. Xu, J. Zhang, and S. Li, Macromol. Res., 27, 1124 (2019).

    Article  CAS  Google Scholar 

  18. J. Josse and W. F. Harrington, J. Mol. Biol., 9, 269 (1964).

    Article  CAS  Google Scholar 

  19. M. Sun, X. Wei, H. Wang, C. Xu, B. Wei, J. Zhang, L. He, Y. Xu, and S. Li, Food Bioprocess Technol., 13, 367 (2020).

    Article  CAS  Google Scholar 

  20. Y. Tabata and Y. Ikada, Adv. Drug Deliv. Rev., 31, 287 (1998).

    Article  CAS  Google Scholar 

  21. Q. Chen, L. Zhu, C. Zhao, Q. Wang, and J. Zheng, Adv. Mater., 25, 4171 (2013).

    Article  CAS  Google Scholar 

  22. X. Li, J. Shang, and Z. Wang, Assembly Autom., 37, 170 (2017).

    Article  Google Scholar 

  23. P. Gruet, P. Maincent, X. Berthelot, and V. Kaltsatos, Adv. Drug Deliv. Rev., 50, 245 (2001).

    Article  CAS  Google Scholar 

  24. L. Lin, B. Yan, J. Yang, L. Chen, and H. Zeng, Adv. Mater., 27, 1294 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Wang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the Scientific Research Project of Hubei Provincial Department of Education (Q20181801, Q20191601), School Project of Wuhan Polytechnic University (2019y08), National Natural Science Foundation of China (No. 21676208), Natural Science Innovation Group Project of Hubei Province (2018CFA030), Nature Science Foundation of Hubei Province (No. 2017CFB507, 2018CFA030), Wuhan Morning Light Plan of Youth Science and Technology (No. 2017050304010326), Applied Basic Frontier Project of Wuhan Science and Technology Bureau (2019020701011478).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Li, S., Xu, C. et al. A New Method of Gelatin Modified Collagen and Viscoelastic Study of Gelatin-Collagen Composite Hydrogel. Macromol. Res. 28, 861–868 (2020). https://doi.org/10.1007/s13233-020-8103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8103-3

Keywords

Navigation