Skip to main content
Log in

Cationic Oligopeptide-Functionalized Mitochondria Targeting Sequence Show Mitochondria Targeting and Anticancer Activity

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Mitochondrial drug delivery systems require development of highly selective mitochondria-targeting carriers. In this study, we report that mitochondria targeting sequence (MTS)-hybrid cationic oligopeptide, MTS-H3R9, shows the dual role of a mitochondria targeting vector along with anticancer effect for cancer therapy. In cytotoxicity assays, MTS-H3R9 was shown to be more effective than MTS. MTS-H3R9 showed significant cell penetration and internalization activity compared to that of MTS along with more efficient escape from lysosome to the cytosol. We showed efficient targeting of MTS-H3R9 to mitochondria in HeLa cell line. Furthermore, we exhibited anticancer agent properties that mitochondrial-accumulated MTS-H3R9 caused cell death by reactive oxygen species generation and loss of mitochondrial membrane potential. MTS-H3R9 exhibited dramatically increased anticancer activity in 3D spheroids as well as in a 2D culture model. We demonstrated that MTS-H3R9 provides dual potentials both as a vehicle for targeted delivery and as a cancer treatment agent for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jurj, C. Braicu, L. A. Pop, C. Tomuleasa, C. D. Gherman, and I. Berindan-Neagoe, Drug. Des. Devel. Ther., 11, 2871 (2017).

    Article  CAS  Google Scholar 

  2. C. Y. Zhao, R. Cheng, Z. Yang, and Z. M. Tian, Molecules, 23, (2018).

  3. E. Zhang, C. Zhang, Y. Su, T. Cheng, and C. Shi, Drug Discov. Today, 16, 140 (2011).

    Article  CAS  Google Scholar 

  4. O. C. Farokhzad and R. Langer, ACS Nano, 3, 16 (2009).

    Article  CAS  Google Scholar 

  5. N. P. Truong, M. R. Whittaker, C. W. Mak, T. P. Davis, Expert. Opin. Drug Deliv., 12, 129 (2015).

    Article  CAS  Google Scholar 

  6. S. Biswas and V. P. Torchilin, Adv. Drug Deliv. Rev., 66, 26 (2014).

    Article  CAS  Google Scholar 

  7. R. J. Youle and A. M. van der Bliek, Science, 337, 1062 (2012).

    Article  CAS  Google Scholar 

  8. L. L. Lackner, BMC Biol., 12, 35 (2014).

    Article  Google Scholar 

  9. S. Grandemange, S. Herzig, and J. C. Martinou, Semin. Cancer Biol., 19, 50 (2009).

    Article  CAS  Google Scholar 

  10. A. Heller, G. Brockhoff, and A. Goepferich, Eur. J. Pharm. Biopharm., 82, 1 (2012).

    Article  CAS  Google Scholar 

  11. J. S. Modica-Napolitano and V. Weissig, Int. J. Mol. Sci., 16, 17394 (2015).

    Article  Google Scholar 

  12. Y. Yamada, H. Akita, K. Kogure, H. Kamiya, and H. Harashima, Mitochondrion, 7, 63 (2007).

    Article  CAS  Google Scholar 

  13. S. R. Jean, M. Ahmed, E. K. Lei, S. P. Wisnovsky, and S. O. Kelley, Acc. Chem. Res., 49, 1893 (2016).

    Article  CAS  Google Scholar 

  14. K. L. Horton and S. O. Kelley, J. Med. Chem., 52, 3293 (2009).

    Article  CAS  Google Scholar 

  15. R. Lin, P. Zhang, A. G. Cheetham, J. Walston, P. Abadir, and H. Cui, Bioconjug. Chem., 26, 71 (2015).

    Article  CAS  Google Scholar 

  16. G. von Heijne, EMBO J., 5, 1335 (1986).

    Article  CAS  Google Scholar 

  17. G. S. Yu, J. Han, K. S. Ko, and J. S. Choi, Macromol. Res., 22, 42 (2014).

    Article  CAS  Google Scholar 

  18. N. Schmidt, A. Mishra, G. H. Lai, and G. C. Wong, FEBS Lett., 584, 1806 (2010).

    Article  CAS  Google Scholar 

  19. C. R. Thoma, M. Zimmermann, I. Agarkova, J. M. Kelm, and W. Krek, Adv. Drug Deliv. Rev., 29, 69 (2014).

    Google Scholar 

  20. B. W. Huang and J. Q. Gao, J. Control. Release, 270, 246 (2018).

    Article  CAS  Google Scholar 

  21. M. O. Cho, Z. Li, H.-E. Shim, I.-S. Cho, M. Nurunnabi, H. Park, K. Y. Lee, S.-H. Moon, K.-S. Kim, S.-W. Kang, and K. M. Huh, NPG Asia Mater., 8, e309 (2016).

    Article  CAS  Google Scholar 

  22. Y. Bae, E. S. Green, G. Y. Kim, S. J. Song, J. Y. Mun, S. Lee, J. I. Park, J. S. Park, K. S. Ko, J. Han, and J. S. Choi, Int. J. Pharm., 515, 186 (2016).

    Article  CAS  Google Scholar 

  23. Y. Bae, M. K. Jung, S. Lee, S. J. Song, J. Y. Mun, E. S. Green, J. Han, K. S. Ko, and J. S. Choi, Eur. J. Pharm. Biopharm., 124, 104 (2018).

    Article  CAS  Google Scholar 

  24. A. C. Hunter, Adv. Drug Deliv. Rev., 58, 1523 (2006).

    Article  CAS  Google Scholar 

  25. A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, Chem. Res. Toxicol., 25, 1885 (2012).

    Article  CAS  Google Scholar 

  26. A. Jain and A. Chugh, FEBS Lett., 590, 2896 (2016).

    Article  CAS  Google Scholar 

  27. Y. Yang, Y. Xiang, and M. Xu, Sci. Rep., 5, 18583 (2015).

    Article  CAS  Google Scholar 

  28. A. K. Varkouhi, M. Scholte, G. Storm, H. J. Haisma, J. Control. Release, 151, 220 (2011).

    Article  CAS  Google Scholar 

  29. J. M. Suski, M. Lebiedzinska, M. Bonora, P. Pinton, J. Duszynski, and M. R. Wieckowski, Methods Mol. Biol., 810, 183 (2012).

    Article  CAS  Google Scholar 

  30. J. Park, J. Lee, and C. Choi, PloS One, 6, e23211 (2011).

    Article  CAS  Google Scholar 

  31. C. Hu, X. Chen, Y. Huang, and Y. Chen, Sci. Rep., 8, 2274 (2018).

    Article  Google Scholar 

  32. L. Xiang, G. Xie, C. Liu, J. Zhou, J. Chen, S. Yu, J. Li, X. Pang, H. Shi, and H. Liang, Biochim. Biophys. Acta, 1833, 2996 (2013).

    Article  CAS  Google Scholar 

  33. X. Zhang, C. Wang, J. Wu, Y. Liu, Z. Yang, Y. Zhang, X. Sui, M. Li, and M. Feng, J. Control. Release, 262, 305 (2017).

    Article  CAS  Google Scholar 

  34. R. Z. Lin and H. Y. Chang, Biotechnol. J., 3, 1172 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Han or Joon Sig Choi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by grant from Basic Science Research Program through the National Research Foundation of Korea (NRF-2016R1D1A1A09917141) and by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2016M3A9B4919639). This work was also supported by the Priority Research Centers Program (2010-0020224).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, Y., Joo, C., Kim, GY. et al. Cationic Oligopeptide-Functionalized Mitochondria Targeting Sequence Show Mitochondria Targeting and Anticancer Activity. Macromol. Res. 27, 1071–1080 (2019). https://doi.org/10.1007/s13233-019-7153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7153-x

Keywords

Navigation