Skip to main content
Log in

Covalent Immobilization of EPCs-Affinity Peptide on Poly(L-Lactide-co-ε-Caprolactone) Copolymers to Enhance EPCs Adhesion and Retention for Tissue Engineering Applications

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Small diameter vascular grafts (inner diameter ≤ 6 mm) have a critical limitation regarding inner thrombotic reaction and occlude when implanted as artificial substitutes. In situ capture of endothelial progenitor cells (EPCs) could be beneficial to improve the endothelialization of artificial blood vessels. This study aimed to develop EPCs-affinity peptide (TPSLEQRTVYAK, TPS) and heparin-conjugated star-shaped poly(L-lactide-co-ε-caprolactone) (St-PLCL) copolymers to simultaneously capture EPCs and improve the hemocompatibility of vascular grafts, respectively. Electrospun membranes and small-diameter vascular grafts were fabricated by mixing linear PLCL, heparin-conjugated St-PLCL (PLCL-Hep), and TPS-conjugated St-PLCL (PLCL-TPS) copolymers. Vascular grafts exhibited biomechanical properties similar to the ISO standard. Membranes containing PLCL-Hep and PLCL-TPS showed fewer adhered platelets than did the control membranes. Moreover, electrospun membranes containing PLCL-Hep and PLCL-TPS adhered significantly to more EPCs than did the control group; however, three types of membranes did not appreciably differ in terms of the attachment of endothelial cells (ECs). Subcutaneous implantation of vascular grafts in Sprague-Dawley rats led to cellular infiltration and neotissue formation, which increased with the passage of time. Taken together, PLCL-TPS and PLCL-Hep copolymers can be fabricated into small-diameter vascular grafts to facilitate endothelialization through endogenous cell recruitment for vascular tissue regeneration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zeng, C. Wen, Y. Wu, L. Li, Z. Zhou, J. Mi, W. Chen, M. Yang, C. Hou, and J. Sun, Biomaterials, 33, 473 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. W.-D. Fan, X.-Q. Zhang, H.-L. Guo, W.-W. Zeng, N. Zhang, Q.-Q. Wan, W.-Y. Xie, J. Cao, and C.-H. Xu, Asian Pac. J. Cancer Prev., 13, 1477 (2012).

    Article  PubMed  Google Scholar 

  3. H. Kurobe, M. W. Maxfield, C. K. Breuer, and T. Shinoka, Stem Cells Transl. Med., 1, 566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Pashneh-Tala, S. MacNeil, and F. Claeyssens, Tissue Eng., Part B, 22, 68 (2015).

    Article  CAS  Google Scholar 

  5. P. Zilla, D. Bezuidenhout, and P. Human, Biomaterials, 28, 5009 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. S. Sarkar, K. M. Sales, G. Hamilton, and A. M. Seifalian, J. Biomed. Mater. Res., Part B, 82, 100 (2007).

    Article  CAS  Google Scholar 

  7. E. Shantsila, T. Watson, H.-F. Tse, and G. Y. Lip, J. Am. Coll. Cardiol., 3, 699 (2008).

    Google Scholar 

  8. T. Asahara and A. Kawamoto, Am. J. Physiol. Cell Physiol., 287, C572 (2004).

    Google Scholar 

  9. M. Avci-Adali, G. Ziemer, and H. P. Wendel, Biotechnol. Adv., 28, 119 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. A. N. Veleva, S. L. Cooper, and C. Patterson, Biotechnol. Bioeng., 98, 306 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. A. N. Veleva, D. E. Heath, S. L. Cooper, and C. Patterson, Biomaterials, 29, 3656 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. J. M. Heyligers, H. J. Verhagen, J. I. Rotmans, C. Weeterings, P. G. de Groot, F. L. Moll, and T. Lisman, J. Vasc. Surg., 43, 587 (2006).

    Article  PubMed  Google Scholar 

  13. Q. Li, Z. Wang, S. Zhang, W. Zheng, Q. Zhao, J. Zhang, L. Wang, S. Wang, and D. Kong, Mater. Sci. Eng., C, 33, 1646 (2013).

    Article  CAS  Google Scholar 

  14. Y. Huang, S. Zhang, B. Niu, D. Wang, Z. Wang, S. Feng, H. Xu, D. Kong, and M. Qiao, Colloids Surf., B, 101, 361 (2013).

    Article  CAS  Google Scholar 

  15. Q. Ji, S. Zhang, J. Zhang, Z. Wang, J. Wang, Y. Cui, L. Pang, S. Wang, D. Kong, and Q. Zhao, Biomacromolecules, 14, 4099 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. J. Fang, J. Zhang, J. Du, Y. Pan, J. Shi, Y. Peng, W. Chen, L. Yuan, S.-H. Ye, and W. R. Wagner, ACS Appl. Mater. Interfaces, 8, 14442 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Z. Chen, Q. Li, J. Chen, R. Luo, M. F. Maitz, and N. Huang, Mater. Sci. Eng., C, 60, 219 (2016).

    Article  CAS  Google Scholar 

  18. W. Wu, R. A. Allen, and Y. Wang, Nat. Med., 18, 1148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. H. Mun, Y. Jung, S.-H. Kim, S.-H. Lee, H. C. Kim, I. K. Kwon, and S. H. Kim, Tissue Eng., Part A, 18, 1608 (2012).

    Article  CAS  Google Scholar 

  20. S. H. Kim, S. H. Kim, and Y. Jung, J. Control. Release, 206, 101 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. C. H. Mun, S.-H. Kim, Y. Jung, S.-H. Kim, A.-k. Kim, D.-I. Kim, and S. H. Kim, J. Bioact. Compat. Polym., 28, 233 (2013).

    Article  CAS  Google Scholar 

  22. T. G. Van Tienen, R. G. Heijkants, P. Buma, J. H. de Groot, A. J. Pennings, and R. P. Veth, Biomaterials, 23, 1731 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. M. Shafiq, D. Kong, and S. H. Kim, J. Biomed. Mater. Res., Part A, 105, 2670 (2017).

    Article  CAS  Google Scholar 

  24. M. Shafiq and S. H. Kim, Macromol. Res., 24, 986 (2016).

    Article  CAS  Google Scholar 

  25. M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res., Part A, 103, 2673 (2015).

    Article  CAS  Google Scholar 

  26. M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res., Part A, 104, 1352 (2016).

    Article  CAS  Google Scholar 

  27. J. I. Lim, S. I. Kim, and S. H. Kim, Colloids Surf. B: Biointerfaces, 103, 463 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Z. Wang, Y. Cui, J. Wang, X. Yang, Y. Wu, K. Wang, X. Guo, D. Li, Y. Li, X. L. Zheng, Y. Zhu, D. Kong, and Q. Zhao, Biomaterials, 35, 5700 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. K. S. Jee, H. D. Park, K. D. Park, Y. H. Kim, and J-W. Shin. Biomacromolecules, 5, 1877 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. D. H. Go, Y. K. Joung, S. Y. Park, Y. D. Park, and K. D. Park, J. Biomed. Mater. Res. Part A, 86, 842 (2008).

    Article  CAS  Google Scholar 

  31. A. Benkaddour, K. Jradi, S. Robert, and C. Daneault. Nanomaterials, 3, 141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hyun Kim.

Additional information

Acknowledgment: This study was supported by the KIST Institutional Program (2E26900) and by the KU-KIST Graduate School of Converging Science and Technology Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhee, J., Shafiq, M., Kim, D. et al. Covalent Immobilization of EPCs-Affinity Peptide on Poly(L-Lactide-co-ε-Caprolactone) Copolymers to Enhance EPCs Adhesion and Retention for Tissue Engineering Applications. Macromol. Res. 27, 61–72 (2019). https://doi.org/10.1007/s13233-019-7003-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7003-x

Keywords

Navigation