Skip to main content
Log in

Fabrication of highly conductive fibers by metal ion-exchange using a simply modified wet-spinning process

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Metallically conducting flexible alginate fibers with superior mechanical strength and environmental stability was obtained by metal ion-exchange using a simply modified continuous wet-spinning process. Spinning solution was prepared by dissolving Na-alginate polymer in distilled water, followed by spinning into CaCl2 coagulation bath to form Ca-alginate swollen gel fiber. The Ca-alginate fiber was then immersed into AgNO3 aqueous solution for incorporation of Ag+ ion into the swollen Ca-alginate alginate fiber, resulting in the alginate fiber complexed with both Ca++ and Ag+ ions (Ag/Ca-alginate fiber). The Ag/Ca-alginate fiber was finally immersed into aqueous dimethylamine borane complex (DMAB) reduction solution, reducing Ag+ ions to Ag nanoparticles (AgNP) in the fiber. The AgNP embedded Ca-alginate conducting fiber (AgNP/Ca-alginate fiber) was washed with distilled water several times and dried. It was observed that AgNPs were uniformly formed and dispersed both on the surface and inside of the AgNP/Ca-alginate fiber. The fiber exhibits superior room temperature electrical conductivity and mechanical strength as high as 2,000 S/cm and 290 MPa, respectively. The AgNP/ Ca-alginate fiber also possessed excellent environmental stability, showing little conductivity change even after 800 hours under a harsh 60 oC and 70% relative humidity condition. Conductive fabric with extremely low surface resistivity of 0.6 Ω/□ could be fabricated using the AgNP/Ca-alginate fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Duran and H. Kadoğlu, Textile Res. J., 85, 1009 (2015).

    Article  CAS  Google Scholar 

  2. X. Pu, L. Li, C. Jiang, and Z. L. Wang, Adv. Mater., 28, 98 (2016).

    Article  CAS  Google Scholar 

  3. S. H. Lee, J. Y. Kim, C. M. Koo, and W. N. Kim, Macromol. Res., 25, 936 (2017).

    Article  CAS  Google Scholar 

  4. H. Jiyong, Z. Xiaofeng, L. Guohao, Y. Xudong, and D. Xin, Autex Res. J., 16, 7 (2016).

    Article  Google Scholar 

  5. S.-S. Hwang, Compos. Part B: Eng., 98, 1 (2016).

    Article  CAS  Google Scholar 

  6. M. Ramuz, B. C. K. Tee, J. B. H. Tok, and Z. Bao, Adv. Mater., 24, 3223 (2012).

    Article  CAS  Google Scholar 

  7. J. Tong, S. Xiong, Y. Zhoiu, L. Mao, X. Min, and T. Liu, Mater. Horiz., 3, 452 (2016).

    Article  CAS  Google Scholar 

  8. J. E. Yoo and J. Bae, Macromol. Res., 23, 749 (2015).

    Article  CAS  Google Scholar 

  9. Y. Huang, H. Hu, Y. Huang, M. Zhu, and C. Zhi, ACS Nano, 9, 4766 (2015).

    Article  CAS  Google Scholar 

  10. J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, and H. Hu, Nano Energy, 27, 230 (2016).

    Article  CAS  Google Scholar 

  11. A. Ameli, M. Nofar, S. Wang, and C. B. Park, ACS Appl. Mater. Interfaces, 6, 11091 (2014).

    Article  CAS  Google Scholar 

  12. A. Neves, T. H. Bointon, L. Melo, S. Russo, I. De Schrijver, M. F. Craciun, and H. Alves, Sci. Rep., 5, 9866 (2015).

    Article  CAS  Google Scholar 

  13. T. Könyves-Toth, A. Gassmann, and H. von Seggern, Materials, 7, 5254 (2014).

    Article  Google Scholar 

  14. M. Stoppa and A. Chiolerio, Sensors, 14, 11957 (2014).

    Article  CAS  Google Scholar 

  15. B. K. Little, Y. Li, V. Cammarata, R. Broughton, and G. Mills, ACS Appl. Mater. Interfaces, 3, 1965 (2011).

    Article  CAS  Google Scholar 

  16. Y. Zhang, Y. Zhao, J. Ren, W. Weng, and H. Peng, Adv. Mater., 28, 4524 (2016).

    Article  CAS  Google Scholar 

  17. R. Ma, B. Kang, S. Cho, M. Choi, and S. Baik, ACS Nano, 9, 10876 (2015).

    Article  CAS  Google Scholar 

  18. S. Seyedin, J. M. Razal, P. C. Innis, A. Jeiranikhameneh, S. Beirne, and G. G, Wallace, ACS Appl. Mater. Interfaces, 7, 21150 (2015).

    Article  CAS  Google Scholar 

  19. G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, and H. Peng, Adv. Mater., 28, 3646 (2016).

    Article  CAS  Google Scholar 

  20. A. B. Ross, C. Hall, K. Anastasakis, A. Westwood, J. M. Jones, and R. J. Crewe, J. Anal. Appl. Pyrolysis, 91, 344 (2011).

    Article  CAS  Google Scholar 

  21. D. Charumathi and N. Das, Desalination, 285, 22 (2012).

    Article  CAS  Google Scholar 

  22. A. Watthanaphanit, P. Supaphol. H. Tamura, S. Tokura, and R. Rujiravanit, Carbohydr. Polym., 79, 738 (2010).

    Article  CAS  Google Scholar 

  23. H. Hecht and S. Srebnik, Biomacromolecules, 17, 2160 (2016).

    Article  CAS  Google Scholar 

  24. R. M. El-Shishtawy, A. M. Asiri, N. A. Abdelwahed, and M. M. Al-Otaibi, Cellulose, 18, 75 (2011).

    Article  CAS  Google Scholar 

  25. F. M. Reicha, A. Sarhan, M. I. Abdel-Hamid, and I. M. El-Sherbiny, Carbohydr. Polym., 89, 236 (2012).

    Article  CAS  Google Scholar 

  26. M. A Bhosale and B. M Bhanage, Current Org. Chem., 19, 708 (2015).

    Article  CAS  Google Scholar 

  27. W.-G. Kwak, M. H. Oh, S.-Y. Son, and M.-S. Gong, Macromol. Res., 23, 509 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Young Lee.

Additional information

Acknowledgments: This research was financially supported by Ministry of Trade, Industry and Energy of Korea (10048884) and National Research Foundation (NRF) of Korea (Ministry of Science and ICT) (2014-M3A7B4052200 and 2010-0027955). This research was also supported by the Korea Institute of Industrial Technology as “Development of smart textronic products based on electronic fibers and textiles (Kitech JA-17-0045)”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.H., Kim, J.H. & Lee, J.Y. Fabrication of highly conductive fibers by metal ion-exchange using a simply modified wet-spinning process. Macromol. Res. 25, 1230–1236 (2017). https://doi.org/10.1007/s13233-017-5167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5167-9

Keywords

Navigation