Skip to main content
Log in

Molecular characterization of thermoreversibility and temperature dependent physical properties of cellulose solution in N,N-dimethylacetamide and lithium chloride

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The effects of temperature on the physical properties of the cellulose solutions in N,N-dimethylacetamide (DMAc) containing 9 (solvent-9) or 6 wt% (solvent-6) lithium chloride (LiCl) were investigated over the temperature range of 30 to 80 °C. The cellulose solution exhibited a lower critical solution temperature (LCST) behavior over the temperature range observed. The content of LiCl affected the thermoreversible LCST behavior of cellulose solutions, which was almost thermoreversible over the temperature range of 30 to 80 °C for solvent-9 and 30 to 50 °C for solvent-6. The partial thermoreversibility of cellulose chain between 60 and 80 °C in solvent-6 could be explained by increased intramolecular interactions between cellulose molecules with increasing temperature. The thermoreversible LCST behavior of cellulose solution for solvent-9 was further supported by dynamic light scattering measurement which also verified the larger decrease of cellulose chain dimensions in solvent-6 between 60 and 80 °C. The cellulose solutions in DMAc/LiCl exhibited little thermal degradation in the short-term aging between 30 and 80 °C. However, they produced a little thermal degradation in the long-term aging between 80 and 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. J. A. Cuculo, M. W. Frey, and D. R. Salem, Structure Formation in Polymeric Fiber, Hanser Gardner Publications, Inc, Munich, 2001.

    Google Scholar 

  2. S. P. S. Chundawat, G. Bellesia, N. Uppugundla, L. da Costa Sousa, D. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti, G. N. Phillips, P. Langan, V. Balan, S. Gnanakaran, and B. E. Dale, J. Am. Chem. Soc., 133, 11163 (2011).

    Article  CAS  Google Scholar 

  3. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).

    Article  CAS  Google Scholar 

  4. C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).

    Article  CAS  Google Scholar 

  5. C. Roy, T. Budtova, and P. Navard, Biomacromolecules, 4, 259 (2003).

    Article  CAS  Google Scholar 

  6. M. Gericke, K. Schlufter, T. Liebert, T. Heinze, T. Budtova, 10, 1188 (2009).

    CAS  Google Scholar 

  7. F. L. Tim, J. H. Thomas, and J. E. Kevin, Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, Washington, DC, 2010.

    Google Scholar 

  8. R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).

    Article  CAS  Google Scholar 

  9. H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).

    Article  CAS  Google Scholar 

  10. J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. C. Han, and S. Kuga, Macromolecules, 41, 9345 (2008).

    Article  CAS  Google Scholar 

  11. A. Striegel, Carbohydr. Polym., 34, 267 (1997).

    Article  CAS  Google Scholar 

  12. A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).

    Article  CAS  Google Scholar 

  13. A.-L. Dupont, Polymer, 44, 4117 (2003).

    Article  CAS  Google Scholar 

  14. T. Matsumoto, D. Tatsumi, N. Tamai, and T. Takaki, Cellulose, 8, 275 (2001).

    Article  CAS  Google Scholar 

  15. U. Henniges, M. Kostic, A. Borgards, T. Rosenau, and A. Potthast, Biomacromolecules, 12, 871 (2011).

    Article  CAS  Google Scholar 

  16. M. Hasani, U. Henniges, A. Idström, L. Nordstierna, G. Westman, T. Rosenau, and A. Potthast, Carbohydr. Polym., 98, 1565 (2013).

    Article  CAS  Google Scholar 

  17. E. Sjöholm, K. Gustafsson, B. Eriksson, W. Brown, and A. Colmsjö, Carbohydr. Polym., 41, 153 (2000).

    Article  Google Scholar 

  18. M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, and E. Bianchi, Macromolecules, 18, 640 (1985).

    Article  CAS  Google Scholar 

  19. Y. H. Cho, K. S. Dan, and B. C. Kim, Korea-Aust. Rheol. J., 20, 73 (2008).

    Google Scholar 

  20. S. I. Song and B. C. Kim, Polymer, 45, 2381 (2004).

    Article  CAS  Google Scholar 

  21. M. Heskins and J. E. Guillet, J. Macromol. Sci. Chem., 2, 1441 (1968).

    Article  CAS  Google Scholar 

  22. Z. Cui, B. H. Lee, and B. L. Vernon, Biomacromolecules, 8, 1280 (2007).

    Article  CAS  Google Scholar 

  23. A. K. Dikshit and A. K. Nandi, Macromolecules, 33, 2616 (2000).

    Article  CAS  Google Scholar 

  24. A. Noro, Y. Matsushita, and T. P. Lodge, Macromolecules, 41, 5839 (2008).

    Article  CAS  Google Scholar 

  25. A. Potthast, T. Rosenau, H. Sixta, and P. Kosma, Tetrahedron Lett., 43, 7757 (2002).

    Article  CAS  Google Scholar 

  26. J. Malešic, J. Kolar, M. Strlic, D. Kocar, D. Fromageot, J. Lemaire, and O. Haillant, Polym. Degrad. Stab., 89, 64 (2005).

    Article  Google Scholar 

  27. A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).

    Article  CAS  Google Scholar 

  28. A. Emsley, M. Ali, and R. Heywood, Polymer, 41, 8513 (2000).

    Article  CAS  Google Scholar 

  29. T. Röder, B. Morgenstern, N. Schelosky, and O. Glatter, Polymer, 42, 6765 (2001).

    Article  Google Scholar 

  30. S. Chrapava, D. Touraud, T. Rosenau, A. Potthast, and W. Kunz, Phys. Chem. Chem. Phys., 5, 1842 (2003).

    Article  CAS  Google Scholar 

  31. N. Tamai, H. Aono, D. Tatsumi, and T. Matsumoto, J. Soc. Rheol. Jap., 31, 119 (2003).

    Article  CAS  Google Scholar 

  32. M. P. Vega, E. L. Lima, and J. C. Pinto, Polymer, 42, 3909 (2001).

    Article  CAS  Google Scholar 

  33. S. J. Bae, M. K. Joo, Y. Jeong, S. W. Kim, W.-K. Lee, Y. S. Sohn, and B. Jeong, Macromolecules, 39, 4873 (2006).

    Article  CAS  Google Scholar 

  34. T. W. G. Solomons, Organic Chemistry, Wiley, New York, 1984.

    Google Scholar 

  35. C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B, 118, 9507 (2014).

    Article  CAS  Google Scholar 

  36. A. M. Striegel, J. Chilean Chem. Soc., 48, 73 (2003).

    Article  CAS  Google Scholar 

  37. Y. Eom and B. C. Kim, Polymer, 55, 2570 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliq, Z., Kim, B.C. Molecular characterization of thermoreversibility and temperature dependent physical properties of cellulose solution in N,N-dimethylacetamide and lithium chloride. Macromol. Res. 24, 547–555 (2016). https://doi.org/10.1007/s13233-016-4073-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4073-x

Keywords

Navigation