Skip to main content
Log in

Antibacterial properties of silver doped TiO2 nanoparticles synthesized via sol-gel technique

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this work, antibacterial, micro-structural, and fluorescence properties of silver (Ag) doped TiO2 nanoparticles were studied to analyze the effect of silver for effective improvement in antibacterial properties of TiO2. Antibacterial properties of pure TiO2 and Ag-TiO2 was studied using Escherichia coli, Pseudomonas aeruginosa as Gram Negative and Bacillus subtilis, Staphylococcus aureus as Gram positive bacteria, as a model for Agar disc diffusion assay method. The concept of inhibition zone diameter was applied to observe the antibacterial activity of TiO2 and Ag-TiO2. It was observed that the antibacterial activity of TiO2 improves with doping of Ag. Fluorescence spectra confirm the red shift in band edge emission at excitation wavelength of 360 nm which shows effective fluorescence properties of these nanoparticles. Microstructures of these nanoparticles have studied with the help of transmission electron microscopy (TEM) and atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photo. Chem. Photobiol. C, 1, 1 (2000).

    Article  CAS  Google Scholar 

  2. A. K. P. D. Savio, J. Fletcher, K. Smith, R. Iyer, J. M. Bao, and F. C. R. Hernández, Appl. Catal. B, 182, 449 (2016).

    Article  CAS  Google Scholar 

  3. Y. Huang, Q. Shang, D. Wang, S. Yang, H. Guan, Q. Lu, and S. C. Tsang, Appl. Catal. B, 187, 59 (2016).

    Article  CAS  Google Scholar 

  4. M. Liu, H. Li, and W. Wanga, Catal. Today, 264, 236 (2016).

    Article  CAS  Google Scholar 

  5. S. Ananthakumar, J. Ramkumar, and S. M. Babu, Renewable Sustainable Energy Rev., 57, 1307 (2016).

    Article  CAS  Google Scholar 

  6. D.-H. Kuo, W.-T. Hsu, and Y.-Y. Yang, Appl. Catal. B, 184, 191 (2016).

    Article  CAS  Google Scholar 

  7. K. Gupta, R. P. Singh, A. Pandey, and A. Pandey, Beilstein J. Nanotechnol., 4, 345 (2013).

    Article  Google Scholar 

  8. M. Anpo, Pure Appl. Chem., 72, 1787 (2000).

    CAS  Google Scholar 

  9. A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J. C. Conesa, and J. Soria, Chem. Commun., 24, 2718 (2001).

    Article  Google Scholar 

  10. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Ishida, T. Sasaki, and M. Anpo, J. Synchrotron Radiat., 8, 569 (2001).

    Article  CAS  Google Scholar 

  11. H. A. Foster, I. B. Dittta, S. Varghese, and A. Steele, Appl. Microbiol. Biotechnol., 90, 1847 (2011).

    Article  CAS  Google Scholar 

  12. M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, Int. J. Electrochem. Sci., 7, 4871 (2012).

    CAS  Google Scholar 

  13. X. Fan, J. Fan, X. Hu, E. Liu, L. Kang, C. Tang, Y. Ma, H. Wu, and Y. Li, Ceram. Int., 40, 15907 (2014).

    Article  CAS  Google Scholar 

  14. J. Bahadur, S. Agrawal, A. Parveen, A. Jawad, S. S. Z. Ashraf, and R. M. Ghalib, Mater. Focus., 4, 134 (2015).

    Article  CAS  Google Scholar 

  15. Y. Matsumura, K. Yoshikata, S. Kunisaki, and T. Tsuchido, Appl. Environ. Microbiol., 69, 4278 (2003).

    Article  CAS  Google Scholar 

  16. B. Guo, Z. Liu, L. Hong, and H. Jiang, Surf. Coat. Technol. 198, 24 (2005).

    Article  CAS  Google Scholar 

  17. I. Sondi and B. S. Sondi, J. Colloid Interface Sci., 275, 177 (2004).

    Article  CAS  Google Scholar 

  18. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, J. Biomed. Mater. Res., 52, 662 (2000).

    Article  CAS  Google Scholar 

  19. J. Xu, S. Shi, L. Li, X. Zhang, Y. Wang, X. Chen, J. Wang, L. Lv, F. Zhang, and J. Zhong, J. Appl. Phys., 107, 053910 (2010).

    Article  Google Scholar 

  20. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Appl. Phys. Lett., 78, 1125 (2001).

    Article  CAS  Google Scholar 

  21. S. Hu, A. Wang, X. Li, Y. Wang, and H. Löwe, Chem. Asian J., 5, 1171 (2010).

    Article  CAS  Google Scholar 

  22. B. Choudhury and A. Choudhury, J. Lumin., 132, 174 (2012).

    Article  Google Scholar 

  23. C. Xu, J. Sun, and L. Gao, J. Mater. Chem., 21, 11253 (2011).

    Article  CAS  Google Scholar 

  24. A. Sotto, A. Boromand, S. Balta, J. Kim, and B. V. Bruggen, J. Mater. Chem., 21, 10311 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadur, J., Agrawal, S., Panwar, V. et al. Antibacterial properties of silver doped TiO2 nanoparticles synthesized via sol-gel technique. Macromol. Res. 24, 488–493 (2016). https://doi.org/10.1007/s13233-016-4066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4066-9

Keywords

Navigation