Skip to main content
Log in

Molecular Characterization on the Anomalous Viscosity Behavior of Cellulose Solutions in N,N-Dimethyl Acetamide and Lithium Chloride

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The physical properties of dilute cellulose solutions in N,N-dimethyl acetamide (DMAc) including 9 wt% lithium chloride (LiCl) were investigated in terms of concentration, temperature and molecular weight of cellulose. Over the concentration range of 0.01 to 2.5 g/dL, the viscosity of the cellulose solutions exhibited a lower critical solution temperature (LCST) behavior which proved thermoreversible between 30 and 60 °C. The LCST behavior was further supported by dynamic light scattering measurement. In the extremely dilute concentration range, 0.01 to 0.08 g/dL, the reduced viscosity (η red ) of cellulose solutions was increased with decreasing concentration. The anomalous coil expansion with decreasing concentration could be explained by the increase of the conductivity of cellulose solutions with decreasing concentration, which was also verified by dynamic light scattering experiment. In the concentration range of 0.1 and 2.5 g/dL, both cellulose solutions gave a drastic increase of η red in the vicinity of the critical concentration (C*), 0.9 g/dL. The slope of the curve of η red vs. concentration was higher for the cellulose of higher molecular weight, but it did not change with temperature between 30 and 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, and A. Isogai, Biomacromolecules, 14, 1160 (2013).

    Article  CAS  Google Scholar 

  2. A. Walther, J. V. Timonen, I. Díez, A. Laukkanen, and O. Ikkala, Adv. Mater., 23, 2924 (2011).

    Article  CAS  Google Scholar 

  3. M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).

    Article  CAS  Google Scholar 

  4. K. Ben Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, and A. Dufresne, ACS Macro Lett., 1, 236 (2012).

    Article  Google Scholar 

  5. E. E. Brown, D. Hu, N. Abu Lail, and X. Zhang, Biomacromolecules, 14, 1063 (2013).

    Article  CAS  Google Scholar 

  6. N. A. J. A. Cuculo, M. W. Frey, D. R. Salem, Structure Formation in Polymeric Fiber, Hanser Gardner Publications, Inc, Munich, 2001.

    Google Scholar 

  7. S. P. Chundawat, G. Bellesia, N. Uppugundla, L. da Costa Sousa, D. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti, G. N. Phillips, and P. Langan, J. Am. Chem. Soc., 133, 11163 (2011).

    Article  CAS  Google Scholar 

  8. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).

    Article  CAS  Google Scholar 

  9. T. I. Kondo, Polysaccharides, Structural Diversity and Functional Versatility, Marcel Dekker, New York, 1998.

    Google Scholar 

  10. D. B. Kim, W. S. Lee, S. M. Jo, Y. M. Lee, and B. C. Kim, Polym. J., 33, 139 (2001).

    Article  CAS  Google Scholar 

  11. C. Roy, T. Budtova, and P. Navard, Biomacromolecules, 4, 259 (2003).

    Article  CAS  Google Scholar 

  12. M. Gericke, K. Schlufter, T. Liebert, T. Heinze, and T. Budtova, Biomacromolecules, 10, 1188 (2009).

    Article  CAS  Google Scholar 

  13. C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).

    Article  CAS  Google Scholar 

  14. T. R. Dawsey and C. L. McCormick, J. Macromol. Sci., Part C, 30, 405 (1990).

    Article  Google Scholar 

  15. F. L. Tim, J. H. Thomas, and J. E. Kevin, Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, 2010.

    Google Scholar 

  16. R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).

    Article  CAS  Google Scholar 

  17. H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).

    Article  CAS  Google Scholar 

  18. J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. C. Han, and S. Kuga, Macromolecules, 41, 9345 (2008).

    Article  CAS  Google Scholar 

  19. A. Striegel, Carbohydr. Polym., 34, 267 (1997).

    Article  CAS  Google Scholar 

  20. A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).

    Article  CAS  Google Scholar 

  21. A. L. Dupont, Polymer, 44, 4117 (2003).

    Article  CAS  Google Scholar 

  22. C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B, 118, 9507 (2014).

    Article  CAS  Google Scholar 

  23. H. Ute, S. Sonja, R. Thomas, and P. Antje, in Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, 2010, Vol. 1033, pp 165–177.

    Google Scholar 

  24. S. Chrapava, D. Touraud, T. Rosenau, A. Potthast, and W. Kunz, Phys. Chem. Chem. Phys., 5, 1842 (2003).

    Article  CAS  Google Scholar 

  25. T. Schult, T. Hjerde, O. I. Optun, P. J. Kleppe, and S. Moe, Cellulose, 9, 149 (2002).

    Article  CAS  Google Scholar 

  26. T. Matsumoto, D. Tatsumi, N. Tamai, and T. Takaki, Cellulose, 8, 275 (2001).

    Article  CAS  Google Scholar 

  27. U. Henniges, M. Kostic, A. Borgards, T. Rosenau, and A. Potthast, Biomacromolecules, 12, 871 (2011).

    Article  CAS  Google Scholar 

  28. M. Hasani, U. Henniges, A. Idström, L. Nordstierna, G. Westman, T. Rosenau, and A. Potthast, Carbohydr. Polym., 98, 1565 (2013).

    Article  CAS  Google Scholar 

  29. E. Sjöholm, K. Gustafsson, B. Eriksson, W. Brown, and A. Colmsjö, Carbohydr. Polym., 41, 153 (2000).

    Article  Google Scholar 

  30. M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, and E. Bianchi, Macromolecules, 18, 640 (1985).

    Article  CAS  Google Scholar 

  31. Y. H. Cho, K. S. Dan, and B. C. Kim, Korea-Aust. Rheol. J., 20, 73 (2008).

    Google Scholar 

  32. S. I. Song and B. C. Kim, Polymer, 45, 2381 (2004).

    Article  CAS  Google Scholar 

  33. X. Dong, J.-F. Revol, and D. Gray, Cellulose, 5, 19 (1998).

    Article  CAS  Google Scholar 

  34. F. M. Winnik, Macromolecules, 20, 2745 (1987).

    Article  CAS  Google Scholar 

  35. P. Donnelly, J. Entry, D. Crawford, and K. Cromack, Microb. Ecol., 20, 289 (1990).

    Article  CAS  Google Scholar 

  36. A. Potthast, T. Rosenau, H. Sixta, and P. Kosma, Tetrahedron Lett., 43, 7757 (2002).

    Article  CAS  Google Scholar 

  37. M. P. Vega, E. L. Lima, and J. C. Pinto, Polymer, 42, 3909 (2001).

    Article  CAS  Google Scholar 

  38. T. Röder, B. Morgenstern, N. Schelosky, and O. Glatter, Polymer, 42, 6765 (2001).

    Article  Google Scholar 

  39. Y. Eom and B. C. Kim, Polymer, 55, 2570 (2014).

    Article  CAS  Google Scholar 

  40. T. W. G. Solomons, Organic Chemistry, Wiley, New York, 1984.

    Google Scholar 

  41. V. M. Zelenkovskii, L. A. Fen’ko, and A. V. Bil’dyukevich, Polym. Sci. Ser. B, 48, 28 (2006).

    Article  Google Scholar 

  42. D. Das, B. Das, and D. Hazra, J. Solution Chem., 31, 425 (2002).

    Article  CAS  Google Scholar 

  43. M. R. Kasaai, J. Appl. Polym. Sci., 86, 2189 (2002).

    Article  CAS  Google Scholar 

  44. M. Bercea, C. Ioan, S. Ioan, B. Simionescu, and C. Simionescu, Prog. Polym. Sci., 24, 379 (1999).

    Article  CAS  Google Scholar 

  45. P.-D. Hong, C.-M. Chou, and C.-H. He, Polymer, 42, 6105 (2001).

    Article  CAS  Google Scholar 

  46. K. H. Lee, I. K. Song, and B. C. Kim, Korea-Aust. Rheol. J., 20, 213 (2008).

    Google Scholar 

  47. C. B. Shogbon, J.-L. Brousseau, H. Zhang, B. C. Benicewicz, and Y. A. Akpalu, Macromolecules, 39, 9409 (2006).

    Article  CAS  Google Scholar 

  48. J. R. Schaefgen and C. F. Trivisonno, J. Am. Chem. Soc., 73, 4580 (1951).

    Article  CAS  Google Scholar 

  49. D. Baird and J. Smith, J. Polym. Sci., Polym. Chem. Ed., 16, 61 (1978).

    Article  CAS  Google Scholar 

  50. R. S. Porter and J. F. Johnson, Chem. Rev., 66, 1 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliq, Z., Kim, B.C. Molecular Characterization on the Anomalous Viscosity Behavior of Cellulose Solutions in N,N-Dimethyl Acetamide and Lithium Chloride. Macromol. Res. 24, 463–470 (2016). https://doi.org/10.1007/s13233-016-4059-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4059-8

Keywords

Navigation