Skip to main content
Log in

Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, nanocomposite films were prepared by using chitosan (CHS), poly(vinyl alcohol) (PVA), titanium oxide (TiO2) nanoparticles, sulfosuccinic acid (SSA) as a crosslinking agent, and sorbitol (SO) and citric acid (CA) as plasticizers. The CHS/PVA nanocomposite films were characterized by X-ray diffraction (XRD), Fourier transform IR spectrophotometry (FTIR), and scanning electronic microscopy (SEM). The results of the XRD and FTIR analysis verified that TiO2 characteristic peaks existed in the prepared nanocomposite films. In addition, the intensity of TiO2 characteristic peaks increased with the increase of TiO2 contents. The physical properties such as tensile strength (TS), elongation at break (%E), swelling behavior (SB), and solubility (S) were investigated. The results indicated that compared with films without added TiO2, the mechanical properties and water resistance were enhanced up to 1.42-1.50 times with the addition of TiO2. The photocatalytic degradability of the prepared films containing TiO2 was evaluated using bisphenol A (BPA) and methyl orange (MO) as photodegradation targets. In addition, the photocatalytic degradation kinetics were evaluated using the pseudo-first-order Lagergren equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Roy, R. A. Roy, and D. M. Roy, Mater. Lett., 4, 11 (1986).

    Article  Google Scholar 

  2. J. C. Huang, Adv. Polym. Technol., 21, 11 (2002).

    Article  Google Scholar 

  3. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 11 (2006).

    Article  Google Scholar 

  4. C. M. Chan, J. Wu, J. X. Li, and Y. K. Cheung, Polymer, 43, 11 (2002).

    Article  Google Scholar 

  5. M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, Polymer, 42, 11 (2001).

    Google Scholar 

  6. H. Akita and T. Hattori, J. Polym. Sci., Part B: Polym. Phys., 37, 11 (1999).

    Article  Google Scholar 

  7. J. H. Chang and Y. U. An, J. Polym. Sci., Part B: Polym. Phys., 40, 11 (2002).

    Google Scholar 

  8. S. A. Zavyalov, A. N. Pivkina, and J. Schoonman, Solid State Ionics, 147, 11 (2002).

    Article  Google Scholar 

  9. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny, Polym. Degrad. Stab., 95, 11 (2010).

    Article  Google Scholar 

  10. H. M. C. De Azeredo, Food Res. Int., 42, 11 (2009).

    Article  Google Scholar 

  11. K. Dean, L. Yu, and D. Y. Wu, Compos. Sci. Technol., 67, 11 (2007).

    Article  Google Scholar 

  12. H. Almasi, B. Ghanbarzadeh, and A. A. Entezami, Int. J. Biol. Macromol., 46, 11 (2010).

    Article  Google Scholar 

  13. M. Avella, J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe, Food Chem., 93, 11 (2005).

    Article  Google Scholar 

  14. Y. L. Chung, S. Ansari, L. Estevez, S. Hayrapetyan, E. P. Giannelis, and H. M. Lai, Carbohydr. Polym., 79, 11 (2010).

    Article  Google Scholar 

  15. X. Wen, K. Zhang, Y. Wang, L. Han, C. Han, H. Zhang, S. Chen, and L. Dong, Polym. Int., 60, 11 (2011).

    Article  Google Scholar 

  16. L. Reijnders, Polym. Degrad. Stab., 94, 11 (2009).

    Article  Google Scholar 

  17. X. Wen, Y. Lin, C. Han, K. Zhang, X. Ran, Y. Li, and L. Dong, J. Appl. Polym. Sci., 114, 11 (2009).

    Article  Google Scholar 

  18. A. N. Ozerin, A. N. Zelenetskii, T. A. Akopova, O. B. Pavlova-Verevkina, L. A. Ozerina, N. M. Surin, and A. S. Kechek’yan, Polym. Sci. Ser. A, 48, 11 (2006).

    Article  Google Scholar 

  19. N. Nakayama and T. Hayashi, Polym. Degrad. Stab., 92, 11 (2007).

    Article  Google Scholar 

  20. P. A. Sreekumar, M. A. Al-Harthi, and S. K. De, J. Compos. Mater., 46, 11 (2012).

    Article  Google Scholar 

  21. Y. H. Yun, Y. N. Youn, S. D. Yoon, and J. U. Lee, J. Ceram. Process Res., 13, 11 (2012).

    Google Scholar 

  22. H. S. Byun, M. H. Park, G. T. Lim, and S. D. Yoon, J. Nanosci. Nanotechnol., 11, 11 (2011).

    Google Scholar 

  23. H. W. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 43, 11 (2010).

    Google Scholar 

  24. D. Han, L. Yan, W. Chen, and W. Li, Carbohydr. Polym., 83, 11 (2011).

    Google Scholar 

  25. W. H. Kai, Y. Hirota, L. Hua, and Y. Inoue, J. Appl. Polym. Sci., 107, 11 (2008).

    Google Scholar 

  26. F. Dalmas, J. Y. Cavaille, C. Gauthier, L. Chazeau, and R. Dendievel, Compos. Sci. Technol., 67, 11 (2007).

    Article  Google Scholar 

  27. R. Qiao and L. C. Brinson, Compos. Sci. Technol., 69, 11 (2009).

    Article  Google Scholar 

  28. P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, Mater. Res., 12, 11 (2009).

    Article  Google Scholar 

  29. B. Tanhaei, A. Ayati, M. Lahtinen, and M. Sillanpää, Chem. Eng. J., 259, 11 (2015).

    Article  Google Scholar 

  30. M. A. De Moraes, D. S. Cocenza, F. D. C. Vasconcellos, L. F. Fraceto, and M. M. Beppu, J. Environ. Manage., 131, 11 (2013).

    Google Scholar 

  31. T. T. T. Nguyen, B. Tae, and J. S. Park, J. Mater. Sci., 46, 11 (2011).

    Article  Google Scholar 

  32. M. Rinaudo, Prog. Polym. Sci., 31, 11 (2006).

    Article  Google Scholar 

  33. Y. H. Yun, K. J. Hwang, Y. J. Wee, and S. D. Yoon, J. Appl. Polym. Sci., 120, 11 (2011).

    Google Scholar 

  34. S. Govindan, E. A. K. Nivethaa, R. Saravanan, V. Narayanan, and A. Stephen, Appl. Nanosci., 2, 11 (2012).

    Article  Google Scholar 

  35. G. Saraswathy, S. Pal, C. Rose, and T. P. Sastry, Bull. Mater. Sci., 24, 11 (2001).

    Article  Google Scholar 

  36. D. Y. Choi, C. H. Hwang, J. W. Lee, I. H. Lee, I. H. Oh, and J. Y. Park, Mater. Lett., 106, 11 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Do Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, YH., Yun, JW., Yoon, SD. et al. Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles. Macromol. Res. 24, 51–59 (2016). https://doi.org/10.1007/s13233-016-4008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4008-6

Keywords

Navigation