Skip to main content
Log in

Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Odian, Principles of Polymerization, 4th ed., Wiley Inter Science, Hoboken, NJ, 2004.

    Book  Google Scholar 

  2. D. Wang, X. Li, W. J. Wang, X. Gong, and B. G. Li, Macromolecules, 45, 28 (2011).

    Article  Google Scholar 

  3. B. Boutevin, J. Polym. Sci., Part A: Polym. Chem., 38, 3235 (2000).

    Article  CAS  Google Scholar 

  4. A. L. Nogueira, L. M. F. Lona, and R. A. R. Machado, J. Appl. Polym. Sci., 91, 871 (2004).

    Article  CAS  Google Scholar 

  5. J. S. Clites, H. A. Colvin, and R. D. Fiedler, Continuous Polymerization Process, EP Patent 0936232Al, 1999.

    Google Scholar 

  6. A. M. Alb and W. F. Reed, Macromol. React. Eng., 4, 470 (2010).

    Article  CAS  Google Scholar 

  7. S. Beuermann and M. Buback, Prog. Polym. Sci, 27, 191 (2002).

    Article  CAS  Google Scholar 

  8. A. M. Alb and W. F. Reed, Macromolecules, 42, 8093 (2009).

    Article  CAS  Google Scholar 

  9. N. Dotson, R. Galvan, R. Laurence, and M. Tirrell, Polymerization Process Modeling, 1st ed., Wiley-VCH, New York, 1995.

    Google Scholar 

  10. M. Wulkow, Macromol. React. Eng., 2, 461 (2008).

    Article  CAS  Google Scholar 

  11. D. Cuccato, E. Mavroudakis, M. Dossi, and D. Moscatelli, Macromol. Theory Simul., 22, 127 (2013).

    Article  CAS  Google Scholar 

  12. R. L. C. Akkermans, S. Toxvaerd, and W. J. Briels, J. Chem. Phys, 109, 2929 (1998).

    Article  CAS  Google Scholar 

  13. W. Lu and J. Ding, Acta Chim. Sin., 63, 1231 (2005).

    Google Scholar 

  14. W. Lu and J. Ding, Sci. China Ser. B, 35, 27 (2005).

    Google Scholar 

  15. W. Lu and J. Ding, Macromolecules, 39, 7433 (2006).

    Article  CAS  Google Scholar 

  16. J. Genzer, Macromolecules, 39, 7157 (2006).

    Article  CAS  Google Scholar 

  17. M. R. Tomlinson, K. Efimenko, and J. Genzer, Macromolecules, 39, 9049 (2006).

    Article  CAS  Google Scholar 

  18. S. Turgman-Cohen and J. Genzer, Macromolecules, 43, 9567 (2010).

    Article  CAS  Google Scholar 

  19. S. Turgman-Cohen and J. Genzer, J. Am. Chem. Soc., 133, 17567 (2011).

    Article  CAS  Google Scholar 

  20. S. Turgman-Cohen and J. Genzer, Macromolecules, 45, 2128 (2012).

    Article  CAS  Google Scholar 

  21. X. He and J. Tang, J. Polym. Sci., Part A: Polym. Chem., 46, 4486 (2008).

    Article  CAS  Google Scholar 

  22. L. Wang and X. He, J. Polym. Sci., Part A: Polym. Chem., 47, 523 (2009).

    Article  CAS  Google Scholar 

  23. X. Yang, L. Wang, and X. He, J. Polym. Sci., Part A: Polym. Chem., 48, 5072 (2010).

    Article  CAS  Google Scholar 

  24. M. Lattuada, E. D. Gado, T. Abete, L. D. Arcangelis, S. Lazzari, V. Diederich, G. Storti, and M. Morbidelli, Macromolecules, 46, 5831 (2013).

    Article  CAS  Google Scholar 

  25. M. Lisal, J. K. Brennan, and W. R. Smith, J. Chem. Phys, 125, 164905 (2006).

    Article  Google Scholar 

  26. M. Lisal, J. K. Brennan, and W. R. Smith, J. Chem. Phys, 130, 104902 (2009).

    Article  Google Scholar 

  27. H. Liu and Z. Lu, Front. Chem. China, 6, 300 (2011).

    Article  Google Scholar 

  28. I. Carmesin and K. Kremer, Macromolecules, 21, 2819 (1998).

    Article  Google Scholar 

  29. H. P. Deutsch and R. Dickman, J. Chem. Phys., 93, 8983 (1990).

    Article  CAS  Google Scholar 

  30. S. Santanakrishnan, L. Tang, R. A. Hutchinson, M. Stach, I. Lacik, J. Schrooten, P. Hesse, and M. Buback, Macromol. React. Eng., 4, 499 (2010).

    Article  CAS  Google Scholar 

  31. S. S. Cutie, P. B. Smith, D. E. Henton, T. L. Staples, and C. Powell, J. Polym. Sci., Part B: Polym. Phys., 35, 2029 (1997).

    Article  CAS  Google Scholar 

  32. M. Stach, I. Lacik, D. Chorvát, Jr., M. Buback, P. Hesse, R. A. Hutchinson, and L. Tang, Macromolecules, 41, 5174 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Xia or Peng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Tang, W., Xia, R. et al. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization. Macromol. Res. 23, 1042–1050 (2015). https://doi.org/10.1007/s13233-015-3136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3136-8

Keywords

Navigation