Skip to main content
Log in

Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Adhesion and proliferation of NIH/3T3 mouse fibroblasts on the surfaces of bacterial copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and its mixture with poly(ethylene glycol) with differing crystallinity, surface energy, and mean roughness was investigated. The surface mean roughness of all films on both sides, at the air interface and at the glass interface, measured by atomic force microscopy, was higher (from 17.0±1.4 nm to 290.8±7.0 nm) than that of the tissue culture polystyrene control (9.5±0.6 nm). The structure, surface energy, and chemical composition of bacterial films were studied by differential scanning calorimetry, contact angle measurements, and Fourier transform infrared (FTIR) spectroscopy. After 48 h, cell proliferation on all surfaces was significantly less than on the control substrate; however, after 72 and 96 h, cell proliferation was comparable with control on some surfaces with sufficient roughness. Addition of poly(ethylene glycol) resulted in an increase of adhesion and the metabolic activity of the cells, even for relatively smooth surfaces. The complex correlation of cell metabolic activity with surface energy and crystallinity for “rough” (mean roughness >100 nm) and “smooth” (mean roughness < 100 nm) surfaces is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Volova, E. I. Shishatskaya, V. I. Sevastianov, S. N. Efremov, and O. M. Mogilnaya, Biochem. Bioeng. J., 16, 125 (2003).

    CAS  Google Scholar 

  2. T. G. Volova, V. I. Sevastianov, and E. I. Shishatskaya, Biodegradable Polymers for Medicine, Plantina, Krasnoyarsk, 2006.

    Google Scholar 

  3. Z. Zheng, F. F. Bei, H. L. Tian, and G. Q. Chen, Biomaterials, 26, 3537 (2005).

    Article  CAS  Google Scholar 

  4. M. Yang, S. Zhu, Y. Chen, Z. Chang, G. Chen, Y. Gong, N. Zhao, and X. Zhang, Biomaterials, 25, 1365 (2004).

    Article  CAS  Google Scholar 

  5. X. H. Qu, Q. Wu, K. Y. Zhang, and G. Q. Chen, Biomaterials, 27, 3540 (2006).

    CAS  Google Scholar 

  6. I. Noda, P. R. Green, M. M. Satkowski, and L. A. Schechtman, Biomacromolecules, 6, 580 (2005).

    Article  CAS  Google Scholar 

  7. G. Q. Chen and Q. Wu, Biomaterials, 26, 6565 (2005).

    Article  CAS  Google Scholar 

  8. D. Sundaramurthi, U. M. Krishnan, and S. Sethuraman, J. Biomed. Nanotechnol., 9, 1383 (2013).

    Article  CAS  Google Scholar 

  9. L. L. Xia, Y. S. Li, Z. Zhou, Y. Dai, H. B. Liu, and H. R. Liu, Mater. Sci. Eng. C: Mater. Biol. Appl., 33, 3545 (2013).

    Article  CAS  Google Scholar 

  10. N. N. Wang, Z. Zhou, L. L. Xia, Y. Dai, and H. R. Liu, Mater. Sci. Eng. C: Mater. Biol. Appl., 33, 2294 (2013).

    Article  CAS  Google Scholar 

  11. E. Masaeli, M. Morshed, M. H. Nasr-Esfahani, S. Sadri, J. Hilderink, A. van Apeldoorn, van C. A. Blitterswijk, and L. Moroni, PLoS ONE, 8, e57157 (2013).

    Article  CAS  Google Scholar 

  12. L. X. Lu, X. F. Zhang, Y. Y. Wang, L. Ortiz, X. Mao, Z. L. Jiang, Z. D. Xiao, and N. P. Huang, ACS Appl. Mater. Interfaces, 5, 319 (2013).

    Article  CAS  Google Scholar 

  13. M. Wollenweber, H. Domaschke, T. Hanke, S. Boxberger, G. Schmack, K. Gliesche, D. Scharnweber, and H. Worch, Tissue Eng., 12, 345 (2006).

    Article  CAS  Google Scholar 

  14. R. H. Marchessault, T. L. Bluhm, Y. Deslandes, G. K. Hamer, W. J. Ortst, P. R. Sundararajan, and M. G. Taylor, Macromol. Symp., 19, 235 (1988).

    Article  CAS  Google Scholar 

  15. Y. W. Wang, Q. Wu, J. Chen, and G. Q. Chen, Biomaterials, 26, 899 (2005).

    Article  CAS  Google Scholar 

  16. Y. W. Wang, Q. Wu, and G. Q. Chen, Biomaterials, 25, 669 (2004).

    Article  Google Scholar 

  17. Y. Gao, L. Kong, L. Zhang, Y. Gong, G. Chen, and N. Zhao, Eur. Polym. J., 42, 764 (2006).

    Article  CAS  Google Scholar 

  18. H. Rebello, FDA Requests Recall of All Shelhigh Medical Devices, FDA News Release, 7 (2007).

    Google Scholar 

  19. R. Barbucci, P. Torricelli, M. Fini, D. Pasqui, P. Favia, E. Sardella, R. d’Agostino, and R. Giardino, Biomaterials, 26, 7596 (2005).

    Article  CAS  Google Scholar 

  20. J. M. Taguenage, A. Kassu, and A. Sharma, J. Colloid Interface Sci., 303, 525 (2006).

    Article  Google Scholar 

  21. Y. W. Wang, Q. Wu, and G. Q. Chen, Biomaterials, 24, 4621 (2003).

    Article  CAS  Google Scholar 

  22. Y. Tesema, D. Raghavan, and J. Stubbs III, J. Appl. Polym. Sci., 93, 2445 (2004).

    Article  CAS  Google Scholar 

  23. F. Mwale, H. T. Wang, V. Nelea, L. Luo, J. Antoniou, and M. R. Wertheimer, Biomaterials, 27, 2258 (2006).

    Article  CAS  Google Scholar 

  24. S. P. Massia and J. A. Hubbell, J. Biol. Chem., 267, 10133 (1992).

    CAS  Google Scholar 

  25. D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, and Y. F. Missirlis, Biomaterials, 22, 87 (2001).

    Article  CAS  Google Scholar 

  26. B. Li, Y. Ma, S. Wang, and P. M. Moran, Biomaterials, 26, 4956 (2005).

    Article  CAS  Google Scholar 

  27. R. Singhvi, G. Stephanopoulos, and D. I. C. Wang, Biotechnol. Bioeng., 43, 764 (1994).

    Article  CAS  Google Scholar 

  28. K. D. Chesmel, C. C. Clark, C. T. Brighton, and J. Black, J. Biomed. Mater. Res., 29, 1101 (1995).

    Article  CAS  Google Scholar 

  29. K. Hatano, H. Inoue, T. Kojo, T. Matsunaga, T. Tsujisawa, C. Uchiyama, and Y. Uchida, Bone, 25, 439 (1999).

    Article  CAS  Google Scholar 

  30. Y. Wan, Y. Wang, Z. Liu, X. Qu, B. Han, J. Bei, and S. Wang, Biomaterials, 26, 4453 (2005).

    Article  CAS  Google Scholar 

  31. H. Liao, A. S. Andersson, D. Sutherland, S. Petronis, B. Kasemo, and P. Thomsen, Biomaterials, 24, 649 (2003).

    Article  CAS  Google Scholar 

  32. M. Riehle, M. Dalby, H. Johnstone, A. Mackintosh, and S. Afforssman, Mater. Sci. Eng. C: Mater. Biol. Appl., 23, 337 (2003).

    Article  Google Scholar 

  33. I. Keen, L. J. Raggatt, S. M. Cool, V. Nurcombe, P. Fredericks, M. Trau, and L. Grøndahl, J. Biomater. Sci. Polym. Ed., 18, 1101 (2007).

    Article  CAS  Google Scholar 

  34. B. Y. Yu, P. Y. Chen, Y. M. Sun, Y. T. Lee, and T. H. Young, J. Biomater. Sci. Polym. Ed., 21, 17 (2010).

    Article  CAS  Google Scholar 

  35. P. Kuppan, K. S. Vasanthan, D. Sundaramurthi, U. M. Krishnan, and S. Sethuraman, Biomacromolecules, 12, 3156 (2011).

    Article  CAS  Google Scholar 

  36. Y. W. Wang, F. Yang, Q. Wu, Y. C. Cheng, P. H. F. Yu, J. Chen, and G. Q. Chen, Biomaterials, 26, 755 (2005).

    Article  CAS  Google Scholar 

  37. Y. Gao, L. Kong, L. Zhang, Y. Gong, G. Chen, and N. Zhao, Eur. Polym. J., 42, 764 (2006).

    Article  CAS  Google Scholar 

  38. N. Koyama and Y. Doi, Polymer, 38, 1589 (1997).

    Article  CAS  Google Scholar 

  39. N. Koyama and Y. Doi, Macromolecules, 29, 5843 (1996).

    Article  CAS  Google Scholar 

  40. L. L. Zhang, C. Xiong, and X. Dong, Polymer, 37, 235 (1996).

    Article  CAS  Google Scholar 

  41. D. F. Parra, J. Fusaro, F. Gaboardi, and D. S. Rosa, Polym. Degrad. Stab., 91, 1954 (2006).

    Article  CAS  Google Scholar 

  42. J. Hao and X. Deng, Polymer, 42, 4091 (2001).

    Article  CAS  Google Scholar 

  43. B. Janczuk, T. Bialopiotrovicz, and W. Wojcik, J. Colloid Interface Sci., 127, 59 (1989).

    Article  CAS  Google Scholar 

  44. M. Zenkiewicz, J. Achieve. Mater. Manuf. Eng., 24, 137 (2007).

    Google Scholar 

  45. Y. W. Wang, F. Yang, Q. Wua, Y. C. Chengc, P. H. F. Yuc, J. Chena, and G.-Q. Chena, Biomaterials, 26, 755 (2005).

    Article  CAS  Google Scholar 

  46. B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, Biomaterials, 17, 137 (1996).

    Article  CAS  Google Scholar 

  47. D. Hanein, B. Geiger, and L. Addadi, Science, 263, 1413 (1994).

    Article  CAS  Google Scholar 

  48. S. Faghihi, M. R. Batene, F. Azari, J. A. Szpunar, H. Vali, and M. Tabrizian, Mater. Sci. Forum, 705, 495 (2005).

    Google Scholar 

  49. R. T. H. Chan, C. J. Garvey, H. Marc¸ R. A. Russell, P. J. Holden, and L. J. R. Foster, Int. J. Polym. Sci., 2011, 1549 (2011).

    Google Scholar 

  50. B. L. Farrugia, L. Brooke, D. J. Keddie, J. Daniel, G. A. George, A. Graeme, E. C. Lynam, M. A. Brook, Z. Upton, and T. R. Dargaville, J. Biomed. Mater. Res. A, 100, 1919 (2012).

    Article  Google Scholar 

  51. F. Zhang. Y. Huang, X. D. Li, and S. F. Zhao, Int. J. Oral Maxillofac. Implants, 26, 1183 (2011).

    Google Scholar 

  52. H. Park, J. W. Lee, K. E. Park, W. H. Park, and K. Y. Lee, Colloids Surf. B, 77, 90 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor N. Vasilets or Ki Dong Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilets, V.N., Surguchenko, V.A., Ponomareva, A.S. et al. Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts. Macromol. Res. 23, 205–213 (2015). https://doi.org/10.1007/s13233-015-3025-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3025-1

Keywords

Navigation