Skip to main content
Log in

RETRACTED ARTICLE: Influence of nanoclays and nano-TiO2 on the mechanical and thermal properties of polycarbonate nanocomposite

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 08 September 2012

Abstract

Polycarbonate (PC) nanocomposites were prepared using a melt intercalation technique with a series of organically modified clays and nano-TiO2 (nTiO2). The effect of the clay and nTiO2 loading on the morphological, mechanical and thermal behavior of the PC nanocomposites was examined. The modulus enhancement was greater for the nanocomposite formed from PC with clay than the nTiO2 nanocomposite. These nanocomposites also showed a significant decrease in tensile elongation and ductility with respect to nanoclays incorporation. The nTiO2 nanocomposites also showed superior mechanical properties to the nanocomposite reinforced with nanoclay. The experimental results were compared with theoretical models. The thermal stability of PC and its nanocomposites were investigated by thermogravimetric analysis (TGA). The glass transition temperature was examined by differential scanning calorimetry (DSC). The incorporation of C30B improved the mechanical and thermal properties up to a 5 wt% clay loading due to polar interactions between the PC matrix and the intercalant present in the C30B nanoclay. Wide angle X-ray diffraction (WAXD) showed an increase in the basal spacing of the C30B nanoclay confirming the presence of an intercalated structure. TEM confirmed the intercalation of a C30B clay layers and uniform dispersion of nTiO2 particles in the PC matrix. The viscoelastic behavior examined by dynamic mechanical analysis (DMA) under a periodic stress revealed the stiffness of the PC nanocomposite in the presence of clay and n-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999).

    Article  CAS  Google Scholar 

  2. M. Zanetti, S. Lomakin, and G. Camino, Macromol. Mater. Eng., 279, 1 (2000).

    Article  CAS  Google Scholar 

  3. D. G. LeGrand and J. T. Bendler, Eds., Handbook of Polycarbonate Science and Technology, Marcel Dekker, New York, 2000.

    Google Scholar 

  4. P. J. Yoon, D. L. Hunter, and D. R. Paul, Polymer, 44, 5323 (2003).

    Article  CAS  Google Scholar 

  5. A. J. Hsieh, P. Moy, F. L. Beyer, P. Madison, E. Napadensky, and J. X. Ren, Polym. Eng. Sci., 44, 825 (2004).

    Article  CAS  Google Scholar 

  6. K. M. Lee and C. D. Han, Polymer, 44, 4573 (2003).

    Article  CAS  Google Scholar 

  7. Y. J. Yoo, K. Y. Choi, and J. H. Lee, Macromol. Chem. Phys., 205, 1863 (2004).

    Article  CAS  Google Scholar 

  8. X. B. Hu and A. J. Lesser, Polymer, 45, 2333 (2004).

    Article  CAS  Google Scholar 

  9. M. Mitsunaga, Y. Ito, S. S. Ray, M. Okamoto, and K. Hironaka, Macromol. Mater. Eng., 288, 543 (2003).

    Article  CAS  Google Scholar 

  10. Y. Ito, M. S. Yamashita, and M. Okamoto, Macromol. Mater. Eng., 291, 773 (2006).

    Article  CAS  Google Scholar 

  11. S. S. Ray and M. Bousmina, Polym. Eng. Sci., 46, 1121 (2006).

    Article  CAS  Google Scholar 

  12. R. W. Zong, Y. Hua, S. F. Wang, and L. Song, Polym. Degrad. Stab., 83, 423 (2004).

    Article  CAS  Google Scholar 

  13. S. F. Wang, Y. Hu, L. Song, J. Liu, Z. Y. Chen, and W. C. Fan, J. Appl. Polym. Sci., 91, 1457 (2004).

    Article  CAS  Google Scholar 

  14. S. F. Wang, Y. Hua, Z. Z. Wang, T. Yong, Z. Y. Chen, and W. C. Fan, Polym. Degrad. Stab., 80, 157 (2003).

    Article  CAS  Google Scholar 

  15. I. Gonzalez, J. I. Eguiazabal, and J. Nazabal, Polym. Eng. Sci., 46, 864 (2006).

    Article  CAS  Google Scholar 

  16. J. Alex, P. M. Hsieh, L. F. Beyer, P. Madison, and E. Napadensky, Polym. Eng. Sci., 44, 5 (2004).

    Google Scholar 

  17. X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000).

    Article  CAS  Google Scholar 

  18. G. Severe, A. J. Hsieh, and B. E. Koene, ANTEC, 2, 1523 (2000).

    Google Scholar 

  19. K. M. Lee and C. D. Han, Polymer, 44, 4573 (2003).

    Article  CAS  Google Scholar 

  20. W. Defeng, W. Lanfeng, M. Zhang, and W. Liang, Eur. Polym. J., 43, 1635 (2007).

    Article  Google Scholar 

  21. H. Miyagawa, J. R. Michael, and T. D. Lawrence, Polym. Composite, 26, 42 (2005).

    Article  CAS  Google Scholar 

  22. A. David, U. S. Patent, 41, 0064798 (2008).

    Google Scholar 

  23. K. M. Lee and C. D. Han, Polymer, 44, 4573 (2003).

    Article  CAS  Google Scholar 

  24. Z. A. M. Ishak and A. A. Bakar, Eur. Polym. J., 31, 259 (1995).

    Article  CAS  Google Scholar 

  25. H. Ismail, H. D. Rozman, R. M. Jaffri, and Z. A. Mohd Ishak, Eur. Polym. J., 33, 1627 (1997).

    Article  CAS  Google Scholar 

  26. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002).

    Article  CAS  Google Scholar 

  27. M. Z. Rong, M. Q. Shang, Y. X. Shang, H. M. Zeng, R. Walter, and K. Friedrich, Polymer, 42, 167 (2001).

    Article  CAS  Google Scholar 

  28. A. Dasari, S. Lim, H. Yu, and Z. Z. Mai, Aust. J. Chem., 60, 496 (2007).

    Article  CAS  Google Scholar 

  29. M. Alexandre, G. Beyer, C. Henrish, R. Cloots, A. Rulmont, R. Jerome, and P. Dubois, Macromol. Rapid Commun., 22, 643 (2001).

    Article  CAS  Google Scholar 

  30. J. C. Huang, Z. K. Shu, X. D. Ma, and X. F. Qian, J. Mater. Sci., 36, 871 (2001).

    Article  CAS  Google Scholar 

  31. D. Shah, P. Maiti, D. Jiang, C. A. Batt, and E. P. Giannelis, Adv. Mater., 17, 525 (2005).

    Article  CAS  Google Scholar 

  32. N. Nakayama and T. Hayashi, Polym. Degrad. Stab., 92, 1255 (2007).

    Article  CAS  Google Scholar 

  33. S. W. Shang, J. W. Willams, and K. J. M. Soderholm, J. Mater. Sci., 29, 2406 (1994).

    Article  CAS  Google Scholar 

  34. S. N. Maiti and P. K. Mahapatro, J. Appl. Polym. Sci., 42, 3101 (1991).

    Article  CAS  Google Scholar 

  35. I. H. Tavman, J. Appl. Polym. Sci., 62, 2161 (1996).

    Article  CAS  Google Scholar 

  36. T. S. Chow, J. Mater. Sci., 15, 1873 (1980).

    Article  CAS  Google Scholar 

  37. S. N Maiti and B. H. Lopez, J. Appl. Polym. Sci., 44, 353 (1992).

    Article  CAS  Google Scholar 

  38. S. H. Ahn, S. H. Kim, and S. G. Lee, J. Appl. Polym. Sci., 94, 812 (2004).

    Article  CAS  Google Scholar 

  39. L. E. Nielsen, J. Appl. Polym. Sci., 10, 97 (1966).

    Article  CAS  Google Scholar 

  40. M. R. Piggot and J. Leidner, J. Appl. Polym. Sci., 18, 1619 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Nayak.

Additional information

This article has been retracted. The decision was made by the editorial board of Macromolecular Research due to unethical manipulation of the data in the figure (9a).

The retraction note to this article can be found online at http://dx.doi.org/10.1007/s13233-012-0197-9.

About this article

Cite this article

Jaya, V.S., Mohanty, S., Rahail Parvaiz, M. et al. RETRACTED ARTICLE: Influence of nanoclays and nano-TiO2 on the mechanical and thermal properties of polycarbonate nanocomposite. Macromol. Res. 19, 563–572 (2011). https://doi.org/10.1007/s13233-011-0608-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0608-3

Keywords

Navigation