Skip to main content
Log in

Preparation and characterization of conductive chitosan-poly[N-(3-trimethoxysilylpropyl)aniline] hybrid submicrostructures

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Conducting hybrid submicrostructures composed of chitosan (CS and silica-based conducting poly[N-(3-trimethoxysilylpropyl)aniline] (PTMSPA were prepared by graft copolymerization. The spherical and fibrous morphologies of the CS-PTMSPA hybrid submicrostructures could be observed by optical and field emission electron microscopy. Under room temperature conditions, the CS-PTMSPA graft copolymers possessed the uniformly distributed spherical submicroparticles with diameters in the range of ca. 400–1,000 nm. On the other hand, under ice cold conditions (5 °C), CS-PTMSPA showed the development of randomly oriented fiber bundles. The diameter of a single fiber was in the range of ca. 100–500 nm. These CS-PTMSPA fibers were obtained by a temperature-driven template-free self-assembly pathway. Spectroscopic and thermal evaluations confirmed that CS-PTMSPA graft copolymer had been prepared by an oxidative polymerization method. The electrochemical performance of the CS-PTMSPA submicrostructures were compared with CS and PTMSPA by cyclic voltammetry with the Fe(CN)6 3−/4− system as a redox marker. The CS-PTMSPA submicrostructures showed high electrical conductivity (difference between the anodic and cathodic peaks = 0.24 and 0.29 V for CS-PTMSPA sphere and fiber, respectively compared to those of CS (0.14 V and PTMSPA (0.20 V), which was ascribed to the relatively high surface-to-volume ratios of these submicrostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Su, N. Nuraje, L. Zhang, I. Chu, R. M. Peetz, H. Matsui, and N. Yang, Adv. Mater., 19, 669 (2007).

    Article  CAS  Google Scholar 

  2. H. Z. Chen, R. S. Xu, Q. Sun, J. W. Y. Lam, M. Wang, and B. Z. Tang, Polym. Adv. Technol., 11, 442 (2000).

    Article  CAS  Google Scholar 

  3. M. Gerard, A. Chaubey, and B. D. Malhotra, Biosens. Bioelectron., 17, 345 (2002).

    Article  CAS  Google Scholar 

  4. C. Basavaraja, N. R. Kim, E. A. Jo, and D. S. Huh, Macromol. Res., 18, 222 (2010).

    Article  CAS  Google Scholar 

  5. B. Sankaran and J. R. Reynolds, Macromolecules, 30, 2582 (1997).

    Article  CAS  Google Scholar 

  6. M. A. Khan and S. P. Armes, Adv. Mater., 12, 671 (2000).

    Article  CAS  Google Scholar 

  7. G. G. Wallace, C. O. Too, D. L. Officer, and P. C. Dastoor, MRS Bull., 30, 46 (2005).

    Article  CAS  Google Scholar 

  8. L. W. Shacklette, J. E. Toth, N. S. Murthy, and R. H. Baughman, J. Electrochem. Soc., 132, 1529 (1985).

    Article  CAS  Google Scholar 

  9. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007).

    CAS  Google Scholar 

  10. L. Dai, P. Soundarrajan, and T. Kim, Pure Appl. Chem., 74, 1753 (2002).

    Article  CAS  Google Scholar 

  11. H. Xu, C. Wang, C. Wang, J. Zoval, and M. Madou, Biosens. Bioelectron., 21, 2094 (2006).

    Article  CAS  Google Scholar 

  12. A. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, J. Biomed. Mater. Res. A, 51, 586 (2000).

    Article  CAS  Google Scholar 

  13. R. A. A. Muzzarelli, G. Biagini, A. DeBenedittis, P. Mengucci, G. Majni, and G. Tosi, Carbohydr. Polym., 45, 35 (2001).

    Article  CAS  Google Scholar 

  14. J. H. Choi, S. Lee, H.-J. Kang, J. Y. Lee, J. Kim, H.-O. Yoo, T. R. Stratton, B. M. Applegate, J. P. Youngblood, H. J. Kim, and K. N. Ryu, Macromol. Res., 18, 504 (2010).

    Article  CAS  Google Scholar 

  15. W. Du, S. Niu, Y. Xu, Z. Xu, and C. Fan, Carbohydr. Polym., 75, 385 (2009).

    Article  CAS  Google Scholar 

  16. E. Khor and L. Y. Lim, Biomaterials, 24, 2339 (2003).

    Article  CAS  Google Scholar 

  17. Y. Wan, X. Cao, Q. Wu, S. Zhang, and S. Wang, Polym. Adv. Technol., 19, 114 (2008).

    Article  CAS  Google Scholar 

  18. H. Kam, E. Khor, and L. Lim, J. Biomed. Mater. Res. B, 48, 881 (1999).

    Article  CAS  Google Scholar 

  19. C. L. Schauer, M. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, Thin Solid Film, 434, 250 (2003).

    Article  CAS  Google Scholar 

  20. J. Jin, M. Song, and D. J. Hourston, Biomacromolecules, 5, 162 (2004).

    Article  CAS  Google Scholar 

  21. F. S. Ligler, B. M. Lingerfelt, R. P. Price, and P. E. Schoen, Langmuir, 17, 5082 (2001).

    Article  CAS  Google Scholar 

  22. Y. C. Wei, S. M. Hudson, J. M. Mayer, and D. L. Kaplan, J. Polym. Sci. Part A: Polym. Chem., 30, 2187 (1992).

    Article  CAS  Google Scholar 

  23. C. Tual, E. Espuche, M. Escoubes, and A. Domard, J. Polym. Sci. Part B: Polym. Phys., 38, 1521 (2000).

    Article  CAS  Google Scholar 

  24. J. D. Schiffman and C. L. Schauer, Biomacromolecules, 8, 594 (2007).

    Article  CAS  Google Scholar 

  25. Y. Yang and J. Shao, J. Appl. Polym. Sci., 77, 151 (2000).

    Article  CAS  Google Scholar 

  26. A. G. Yavuz, A. Uygun, and V. R. Bhethanabotla, Carbohydr. Polym., 81, 712 (2010).

    Article  CAS  Google Scholar 

  27. Z. Du, C. Li, L. Li, M. Zhang, S. Xu, and T. Wang, Mater. Sci. Eng. C, 29, 1794 (2009).

    Article  CAS  Google Scholar 

  28. J. G. Varghese, A. A. Kittur, P. S. Rachipudi, and M. Y. Kariduraganavar, J. Membr. Sci., 364, 111 (2010).

    Article  CAS  Google Scholar 

  29. A. Tiwari and S. Gong, Electroanal., 20, 1775 (2008).

    Article  CAS  Google Scholar 

  30. Y. A. Ismail, S. R. Shin, K. M. Shin, S. G. Yoon, K. Shon, S. I. Kim, and S. J. Kim, Sens. Actuat. B, 129, 834 (2008).

    Article  Google Scholar 

  31. T. Thanpitcha, A. Sirivat, A. M. Jamieson, and R. Rujiravanit, Carbohydr. Polym., 64, 560 (2006).

    Article  CAS  Google Scholar 

  32. S. J. Kim, S. R. Shin, G. M. Spinks, I. Y. Kim, and S. I. Kim, J. Appl. Polym. Sci., 96, 867 (2005).

    Article  CAS  Google Scholar 

  33. S. R. Shin, S. J. Park, S. G. Yoon, G. M. Spinks, S. I. Kim, and S. J. Kim, Synth. Met., 154, 213 (2005).

    Article  CAS  Google Scholar 

  34. W. S. Lyoo, J. H. Kim, and H. D. Ghim, Polymer, 42, 6317 (2001).

    Article  CAS  Google Scholar 

  35. G. Lu, L. Wang, R. Wang, Y. Zeng, and X. Huang, Anal. Sci., 22, 575 (2006).

    Article  CAS  Google Scholar 

  36. X. Luo, J. Xu, Y. Du, and H. Chen, Anal. Biochem., 334, 284 (2004).

    Article  CAS  Google Scholar 

  37. J. E. de Albuquerque, L. H. C. Mattoso, R. M. Faria, J. G. Masters, and A. G. MacDiarmid, Synth. Met., 146, 1 (2004).

    Article  Google Scholar 

  38. A. G. Yavuz and A. Gok, Synth. Met., 157, 235 (2007).

    Article  CAS  Google Scholar 

  39. M. D. Alba, Z. Luan, and J. Klinowski, J. Phys. Chem., 100, 2178 (1996).

    Article  CAS  Google Scholar 

  40. Y. D. Glinka, S. Lin, and Y. Chen, Phys. Rev. B, 62, 4733 (2000).

    Article  CAS  Google Scholar 

  41. A. Tiwari and V. Singh, eXPRESS Polym. Lett., 1, 308 (2007).

    Article  CAS  Google Scholar 

  42. V. Singh, D. N. Tripathi, A. Tiwari, and R. Sanghi, J. Appl. Polym. Sci., 95, 820 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Do Ghim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathi, P., Ghim, H.D. & Ragupathy, D. Preparation and characterization of conductive chitosan-poly[N-(3-trimethoxysilylpropyl)aniline] hybrid submicrostructures. Macromol. Res. 19, 442–447 (2011). https://doi.org/10.1007/s13233-011-0515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0515-7

Keywords

Navigation