Skip to main content
Log in

Paclitaxel-polyurethane film for anti-cancer drug delivery: Film characterization and preliminary in vivo study

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polyurethane (PU) films incorporated with an anti-cancer drug paclitaxel (PTX) were prepared using a solvent casting method for potential applications to stent-based drug delivery and the local treatment of malignant tumors around gastrointestinal stents. The films were examined by scanning electron microscopy (SEM), and PTX micro-aggregates were observed when the drug loading was > 2.7 wt%. The in vitro release study revealed that the amount of drug released from the film was virtually independent and cumulative percentage release was inversely proportional to the drug loading. When plotted against the square root of time, the cumulative percentage release was initially linear, but the fraction of the linear region decreased with increasing drug loading, indicating that diffusion-controlled release is not applicable to the PTX molecules in micro-aggregates. When 1.25% PTX-PU films were placed under pre-existing CT-26 tumors in mice, tumor growth was slowed by an average of 65.5% compared to that in the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. M. Han, G. Y. Jin, S. O. Lee, H. S. Kwak, and G. H. Chung, J. Vasc. Interv. Radiol., 14, 1291 (2003).

    Google Scholar 

  2. J. H. Kim, H. Y. Song, J. H. Shin, H. Y. Jung, S. B. Kim, J. H. Kim, and S. I. Park, J. Vasc. Interv. Radiol., 19, 220 (2008).

    Article  Google Scholar 

  3. N. M. K. Lambda, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in Biomedical Applications, CRC Press LLC, Florida, USA, 1997.

    Google Scholar 

  4. R. S. Labow, E. Meek, and J. P. Santerre, Biomaterials, 22, 3025 (2001).

    Article  CAS  Google Scholar 

  5. D. L. Dinnes, J. P. Santerre, and R. S. Labow, Biomaterials, 26, 3881 (2005).

    Article  CAS  Google Scholar 

  6. I. Khan, N. Smith, E. Jones, D. S. Finch, and R. E. Cameron, Biomaterials, 26, 633 (2005).

    Article  CAS  Google Scholar 

  7. D. H. Kim, S. G. Kang, J. R. Choi, J. N. Byun, Y. C. Kim, and Y. M. Ahn, Korean J. Radiol., 2, 75 (2001).

    Article  CAS  Google Scholar 

  8. A. K. Singla, A. Garag, and D. Aggarwal, Int. J. Pharm., 235, 197 (2002).

    Article  Google Scholar 

  9. J. K. Han, M. S. Kim, D. S. Lee, Y. S. Kim, R. W. Park, K. M. Kim, and I. C. Kwon, Macromol. Res., 17, 99 (2009).

    CAS  Google Scholar 

  10. T. Shinke, S. Geva, L. Pendyala, R. Jabara, J. Li, J. P. Chen, A. Venegoni, K. Colley, R. Klein, N. Chronos, K. Robinson, and D. Hou, Int. J. Cardiol., 135, 93 (2009).

    Article  Google Scholar 

  11. L. L. Lao and S. S. Venkatraman, J. Control. Release, 130, 9 (2008).

    Article  CAS  Google Scholar 

  12. G. W. Stone, S. G. Ellis, D. A. Cox, J. Hermiller, C. O’shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, and M. E. Russell, NEJM, 350, 221 (2004).

    Article  CAS  Google Scholar 

  13. G. W. Stone, A. J. Lansky, S. J. Pocock, B. J. Gersh, G. Dangas, S. C. Wong, B. Witzenbichler, G. Guagliumi, J. Z. Peruga, B. R. Brodie, D. Dudek, M. Mockel, A. Ochala, A. Kellock, H. Parise, and R. Mehran, NEJM, 360, 1946 (2009).

    Article  CAS  Google Scholar 

  14. M. Zilberman, Acta Biomaterialia, 1, 615 (2005).

    Article  CAS  Google Scholar 

  15. M. Zilberman, N. D. Schwade, R. S. Meidell, and R. C. Eberhart, J. Biomater. Sci. Polym. Ed., 12, 875 (2001).

    Article  CAS  Google Scholar 

  16. A. Shikanov, A. Ezra, and A. J. Domb, J. Control. Release, 105, 52 (2005).

    Article  CAS  Google Scholar 

  17. K. Elkharraz, N. Faisant, C. Guse, F. Siepmann, B. Arica-Yegin, J. M. Oger, R. Gust, A. Goepferich, J. P. Benoit, and J. Siepmann, Int. J. Pharm., 314, 127 (2006).

    Article  CAS  Google Scholar 

  18. D. K. Lee, H. S. Kim, K. S. Kim, W. J. Lee, H. K. Kim, Y. H. Won, Y. R. Byun, M. Y. Kim, S. K. Baik, and S. O. Kwon, Gastrointest. Endosc., 61, 296 (2005).

    Article  Google Scholar 

  19. S. P. Lyu, R. Sparer, C. Hobot, and K. Dang. J. Control. Release, 102, 679 (2005).

    Article  CAS  Google Scholar 

  20. B. Naxhimura, in Handbook of Pharmaceutical Controlled Release Technology, D. Wise, Ed., Marcel Decker, New York, 2000.

    Google Scholar 

  21. Q. Guo, P. T. Knight, and P. T. Mather. J. Control. Release, 137, 224 (2009).

    Article  CAS  Google Scholar 

  22. V. Dilova, V. Zlatarova, N. Spirova, K. Filcheva, A. Pavlova, and P. Grigorova, Boll. Chim. Farm., 143, 20 (2004).

    CAS  Google Scholar 

  23. K. Y. Chen, J. F. Cuo, and C. Y. Chen, Biomaterials, 21, 161 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sangsoo Park or Don Haeng Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SG., Lee, S.C., Choi, S.H. et al. Paclitaxel-polyurethane film for anti-cancer drug delivery: Film characterization and preliminary in vivo study. Macromol. Res. 18, 680–685 (2010). https://doi.org/10.1007/s13233-010-0715-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0715-6

Keywords

Navigation