Skip to main content
Log in

The Discrete Fourier Transform of (r, s)-Even Functions

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

An (r, s)-even function is a special type of periodic function mod rs. These functions were defined and studied for the the first time by McCarthy. An important example for such a function is a generalization of Ramanujan sum defined by Cohen. In this paper, we give a detailed analysis of DFT of (r, s)-even functions and use it to prove some interesting results including a generalization of the Hölder identity. We also use DFT to give shorter proofs of certain well known results and identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tom Apostol, Introduction to analytic number theory, Springer, 1976.

  2. Matthias Beck and Mary Halloran, Finite trigonometric character sums via discrete fourier analysis, International Journal of Number Theory, 6(01) (2010), 51–67.

    Article  MathSciNet  MATH  Google Scholar 

  3. Eckford Cohen, An extension of Ramanujan’s sum, Duke Math. J., 16(85-90) (1949), 2.

    MathSciNet  MATH  Google Scholar 

  4. Eckford Cohen, An extension of Ramanujan’s sum, ii. Additive properties, Duke Math. J., 16(85-90) (1949), 2.

    MathSciNet  MATH  Google Scholar 

  5. Eckford Cohen, A class of arithmetical functions, Proceedings of National Academy of Sciences, 41(11) (1955), 939–944.

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckford Cohen, An extension of Ramanujan’s sum, iii. Connections with totient functions, Duke Math. J., 23 (1956), 623–630

    MATH  Google Scholar 

  7. Eckford Cohen, Representations of even functions (mod r), i. Arithmetical identities, Duke Math. J., 25 (1958), 401–421.

    Article  MathSciNet  MATH  Google Scholar 

  8. Pentti Haukkanen, Discrete Ramanujan-Fourier transform of even functions (mod r), arXiv preprint arXiv:1210.0295, 2012.

  9. Otto Hölder, Zur theorie der kreisteilungsgleichung k m(x) = 0, Prace Matematycznofizyczne, 1(43) (1936), 13–23.

    MATH  Google Scholar 

  10. Paul J. McCarthy, The generation of arithematical identities, J. Reine Angew. Math., 203 (1960), 55–63.

    MathSciNet  MATH  Google Scholar 

  11. Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory I: Classical theory, 97 Cambridge University Press, 2006.

    Book  MATH  Google Scholar 

  12. K. Vishnu Namboothiri, On solving a restricted linear congruence using generalized Ramanujan sums, arXiv preprint arXiv:1708.04505 [math.NT], 2017.

    MATH  Google Scholar 

  13. K. Vishnu Namboothiri, On the number of solutions of a restricted linear congruence, Journal of Number Theory, 188 (2018), 324–334.

    Article  MathSciNet  MATH  Google Scholar 

  14. Charles A. Nicol and Harry S. Vandiver, A von sterneck arithmetical function and restricted partitions with respect to a modulus, Proceedings of the National Academy of Sciences, 40(9) (1954), 825–835.

    Article  MathSciNet  MATH  Google Scholar 

  15. Saed Samadi, M. Omair Ahmad, and M. N. Shanmukha Swamy, Ramanujam sums and discrete Fourier transforms, IEEE Signal Processing Letters, 12(4) (2005), 293–296.

    Article  Google Scholar 

  16. Wolfgang Schramm, The Fourier transform of functions of the greatest common divisor, Integers, 8(1) (2008), A50.

    MathSciNet  MATH  Google Scholar 

  17. R. Sivaramakrishnan, Classical theory of arithmetic functions, 126, CRC Press, 1988.

    MATH  Google Scholar 

  18. D. Sundararajan, The discrete Fourier transform: Theory, algorithms and applications, World Scientific, 2001.

    Book  MATH  Google Scholar 

  19. Audrey Terras, Fourier analysis on finite groups and applications, 43, Cambridge University Press, 1999.

    Book  MATH  Google Scholar 

  20. László Tóth and Pentti Haukkanen, The discrete Fourier transform of r-even functions, Acta Univ. Sapientiae Math., 3(1) (2011), 5–25.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vishnu Namboothiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namboothiri, K.V. The Discrete Fourier Transform of (r, s)-Even Functions. Indian J Pure Appl Math 50, 253–268 (2019). https://doi.org/10.1007/s13226-019-0322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-019-0322-y

Key words

Navigation