Skip to main content
Log in

Endophytes from the pharmaceutical plant, Annona squamosa: isolation, bioactivity, identification and diversity of its polyketide synthase gene

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Endophytic fungi were isolated from the pharmaceutical plant Annona squamosa during different seasons and 131 strains were isolated. Fermentation extracts of each strain was assayed using six different screening programs for bioactive compounds. Sixty-three of the strains producing bioactive compounds were identified by ITS rDNA sequence data. The diversity of the polyketide synthase (PKS) genes of these 63 strains was investigated using three pairs of primers, LC1-LC2c, LC3-LC5c and KS3-KS4c. Phylogenetic analysis showed that these fungi are distributed in 10 orders, in 19 genera, mostly in the orders Diapothales and Hypocreales. The groups with the highest bioactivity were from Diapothales, Clavicipitales and Xylariales. The relationship between the taxa producing bioactive compounds and the PKS genes indicates that 11 out of the 63 strains analysed contained all three KS domains. Eight of these belonged to the order Diapothales. Twenty mostly hypocrealean and phyllachoralean strains lacked a single KS domain in all three pairs of primers amplified. Two important conclusions can be drawn from this investigation. The endophytic fungi of A. squamosa contain a community with a high degree of bioactivity: Secondly, compared with other fungi, those taxa from the order Diapothales have a rich species diversity and rich PKS gene domains. These findings suggest that they have a high potential as producers of natural bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  • Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540

    Article  CAS  PubMed  Google Scholar 

  • Amnuaykanjanasin A, Punya J, Paungmoung P, Rungrod A, Tachaleat A, Pongpattanakitshote S, Cheevadhanarak S, Tanticharoen M (2005) Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol Lett 251:125–136

    Article  CAS  PubMed  Google Scholar 

  • Araya H (2004) Studies on Annonaceous Tetrahydrofuranic Acetogenins from Annona squamosa L. Seeds. Bulletin of the National Institute of Agricultural Sciences 23:77–149

    CAS  Google Scholar 

  • Araya H, Hara N, Fujimoto Y, Srivastava A, Sahai M (1994a) Squamosten-A, a novel tetrahydrofuranic acetogenin with a double bond in the hydrocarbon chain, from Annona squamosa L. Chem Pharmaceut Bull 42:388–391

    CAS  Google Scholar 

  • Araya H, Hara N, Fujimoto Y, Sahai M (1994b) Squamostanal-A, apparently derived from tetrahydrofuranic acetogenin, from Annona squamosa. Biosci Biotechnol Biochem 58:1146–1147

    Article  CAS  Google Scholar 

  • Araya H, Sahai M, Singh S, Singh AK, Yoshida M, Hara N, Fujimoto Y (2002) Squamocin-O1 and squamocin-O2, new adjacent bis-tetrahydrofuran acetogenins from the seeds of Annona squamosa. Phytochemistry 61:999–1004

    Article  CAS  PubMed  Google Scholar 

  • Asolkar LV, Kakkar KK, Chakre OJ (1992) Glossary of Indian medicinal plants with active principles. Publication and Information Directorate, New Delhi, pp 72–73

    Google Scholar 

  • Atique A, Iqbal M, Ghouse AKM (1985) Use of Annona squamosa and Piper nigrum against diabetes. Fitoterapia 56:190–192

    Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, Araujo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Google Scholar 

  • Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BB (1969) Screening of Indian plants for biological activity: part-II. Indian J Exp Biol 7:250–262

    CAS  PubMed  Google Scholar 

  • Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 26:209–223

    Article  CAS  PubMed  Google Scholar 

  • Bussaban B, Lumyoung S, Lumyoung P, McKenzie EHC, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Bot 74:103–114

    Google Scholar 

  • Cannon PF, Hawksworth DL (1995) The diversity of fungi associated with vascular plants: the known, the unknown and the need to bridge the knowledge gap. Adv Plant Pathol 11:277–302

    Article  Google Scholar 

  • Carrol G (1998) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:229

    Google Scholar 

  • Chareprasert S, Piapukiew J, Thienhirun S, Whalley A, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22:481–486

    Article  Google Scholar 

  • Cheema PS, Dixit RS, Koshi T, Perti SL (1985) Insecticidal properties of the seed oil of Annona squamosa L. J Sci Ind Res 17:132

    Google Scholar 

  • Chen FA, Wu AB, Shieh P, Kuo DH, Hsieh CY (2006) Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chem 94(1):14–18

    Article  CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (eds) (1956) Glossary of Indian medicinal plants. Council of Scientific and Industrial Research, New Delhi, p 20

    Google Scholar 

  • Cunningham JJ (1998) Micronutrients as nutriceutical interventions in diabetes mellitus. J Am Coll Nutr 17:7–12

    CAS  PubMed  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Fungi as producers of secondary metabolites. In: Gullo VP (ed) Discovery of natural products with therapeutic potential. In press

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Fisher PJ, Petrini LE, Sutton BC, Petrini O (1995) A study of fungal endophytes in leaves, stemsandrootsof Gynoxis oleifolia Muchler (Compositae) from Ecuador. Nova Hedwigia 60:589–594

    Google Scholar 

  • Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  • Frölich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104(10):1202–1212

    Article  Google Scholar 

  • Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375

    Article  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Article  CAS  PubMed  Google Scholar 

  • Hopp DC, Zeng L, Gu ZM, McLaughlin JL (1996) Squamotacin: an annonaceous acetogenin with cytotoxic selectivity for the human prostate tumor cell line (PC-3). J Nat Prod 59(2):97–99

    Article  CAS  PubMed  Google Scholar 

  • Hopp DC, Zeng L, Gu ZM, Kozlowski JF, McLaughlin JL (1997) Novel mono-tetrahydrofuran ring acetogenins, from the bark of Annona squamosa, showing cytotoxic selectivities for the human pancreatic carcinoma cell line, PACA-2. J Nat Prod 60:581–586

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, Wang JF, Li GL, Zheng ZH, Su WJ (2001) Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS Immunol Med Microbiol 31:163–167

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, McKenzie EHC, Photita W, Lumyong S (2006) Biodiversity of saprobic fungi. Biodivers Conserv 16:17–35

    Google Scholar 

  • Kaleem M, Asif M, Ahmed QU, Bano B (2006) Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J 47(8):670–675

    CAS  PubMed  Google Scholar 

  • Kotkar HM, Mendki PS, Sadan SV, Jha SR, Upasani SM, Maheshwari VL (2002) Antimicrobial and pesticidal activity of partially purifed flavonoids of Annona squamosa. Pest Manag Sci 58:33–37

    Article  CAS  PubMed  Google Scholar 

  • Kroken S, Glass NL, Taylor JW, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci 100(26):15670–15675

    Article  CAS  PubMed  Google Scholar 

  • Kronvall G, Ringertz S (1991) Antibiotic disk diffusion testing revisited. Single strain regression analysis. Review article. Pathol Microbiol Immunol Scand 99:295–306

    CAS  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2001) Occurren ceand distribution of endophytic fungi in amangrove community. Mycol Res 105(11):1388–1391

    Article  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Langenheim JH (1990) Plant resins. Am Sci 78(1):16–24

    Google Scholar 

  • Lee T, Yun SH, Hodge KT (2001) Polyketide synthase genes in insecth- and nematode-associated fungi. Appl Microbiol Biotechnol 56:181–187

    Article  CAS  PubMed  Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li J, Feng CQ, Zhang WS (2008) A review and prospect on the studies of cordyceps sinensis (Berk.) Sacc. Chinese Agricultural Science Bulletin 24(2):382–384

    Google Scholar 

  • Lin X, Huang YJ, Fang MJ, Wang JF, Zheng ZH, Su WJ (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Lu CH, Huang YJ, Zheng ZH, Su WJ, Shen YM (2007) Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity. World J Microbiol Biotechnol 23:1037–1040

    Article  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Mosmann T (1983) Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Murali TS, Suryanarayanan TS, Venkatesan G (2007) Fungal endophyte communities in two tropical forests of southern India: diversity and host affiliation. Mycol Progr 6:191–199

    Article  Google Scholar 

  • Nicholson TP, Rudd BA, Dawson M, Lazarus CM, Simpson TJ, Cox RJ (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178

    Article  CAS  PubMed  Google Scholar 

  • Paterson RRM (2008) Cordyceps—A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:1469–1495

    Article  CAS  PubMed  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycol Res 105:1508–1513

    Article  Google Scholar 

  • Pillay D, Zambon M (1998) Antiviral drug resistance. Br Med J 317:660–662

    CAS  Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, dos Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. Int J Biol Sci 1:24–33

    CAS  PubMed  Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers 33:139–161

    Google Scholar 

  • Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Sati SC, Pargaein N, Belwal M (2009) Diversity of aquatic hyphomycetes as root endophytes on pteridophytic plants in Kumaun Himalaya. J Am Sci 5(4):179–182

    Google Scholar 

  • Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922

    Article  CAS  Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:325–333

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  Google Scholar 

  • Sunanda P, Anand K (2003) Possible amelioration of hyperthyroidism by the leaf extract of Annona squamosa. Curr Sci 84:1402–1404

    Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639

    Article  PubMed  Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Lui XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Taylor JE, Crous PW (1999) Phaeophleospora faureae comb. nov. associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora. Fungal Divers 3:153–158

    Google Scholar 

  • Vujanovic V, Brisson J (2002) A comparative study of endophytic mycobiota in leaves of Acer saccharum in eastern North America. Mycol Progr 1(2):147–154

    Article  Google Scholar 

  • Wang ZF (2008) Primary stady on the endophytic fungi of Vitis vinifera and their secendary metabolites. Work for the degree of master of Biology, University of Xiamen

  • Wu YC, Hung YC, Chang FR, Cosentino M, Wang HK, Lee KH (1996) Identification of ent-16β, 17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. J Nat Prod 59:635–637

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kjer J, Sendker J, Wray V, Guan HS, Edrada RA, Lin WH, Wu J, Proksch P (2009) Chromones from the endophytic fungus Pestalotiopsis sp. Isolated from the Chinese mangrove plant rhizophora mucronata. J Nat Prod 72(4):662–665

    Article  CAS  PubMed  Google Scholar 

  • Yang SQ, Craik CS (1998) Engineering bidentate macromolecular inhibitors for trypsin and urokinase-type plasminogen activator. J Mol Biol 279:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yang N, Zeng R (2008) Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. Extremophiles 12:97–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grands from project (F) 2007DFA30970 of the Ministry of Science and Technology.

We are grateful for the support of The National High Technology Research and Development Program of China (2007AA091503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Ming Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Huang, Y.J., Zheng, Z.H. et al. Endophytes from the pharmaceutical plant, Annona squamosa: isolation, bioactivity, identification and diversity of its polyketide synthase gene. Fungal Diversity 41, 41–51 (2010). https://doi.org/10.1007/s13225-010-0017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0017-5

Keywords

Navigation