Skip to main content
Log in

The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation

  • Research Project
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

Tweety is a collection of Java libraries that provides a general interface layer for doing research in and working with different knowledge representation formalisms such as classical logics, conditional logics, probabilistic logics, and computational argumentation. It is designed in such a way that tasks like representing and reasoning with knowledge bases inside the programming environment are realizable in a common manner. Furthermore, Tweety contains libraries for dealing with agents, multi-agent systems, and dialog systems for agents, as well as belief revision, preference reasoning, preference aggregation, and action languages. A series of utility libraries that deal with e. g. mathematical optimization complement the collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://tweetyproject.org.

  2. http://protege.stanford.edu.

  3. https://bitbucket.org/renatolundberg/bcontractor.

  4. http://alchemy.cs.washington.edu.

  5. http://maven.apache.org.

  6. http://tweetyproject.org/api/1.4/.

  7. http://tweetyproject.org/w/incmes/.

  8. http://www.sat4j.org.

  9. http://tweetyproject.org/.

  10. The source code of Tweety is hosted at http://sourceforge.net/p/tweety/code/.

References

  1. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press, New York

    MATH  Google Scholar 

  2. Baroni P, Caminada M, Giacomin M (2011) An introduction to argumentation semantics. Knowl Eng Rev 26(4):365–410

    Article  Google Scholar 

  3. Besnard P, Hunter A (2001) A logic-based theory of deductive arguments. Artif Intell 128(1–2):203–235

    Article  MathSciNet  MATH  Google Scholar 

  4. Besnard P, Hunter A (2006) Knowledgebase compilation for efficient logical argumentation. In: Proceedings of the 10th International Conference on Knowledge Representation (KR’06), AAAI Press, pp 123–133

  5. Brachman RJ, Levesque HJ (2004) Knowledge representation and reasoning. The Morgan Kaufmann series in artificial intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  6. Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif Intell 77(2):321–358

    Article  MathSciNet  MATH  Google Scholar 

  7. Fagin R, Halpern J, Moses Y, Vardi MY (1995) Reasoning about knowledge. MIT Press, Cambridge

    MATH  Google Scholar 

  8. Fermé E, Hansson SO (1999) Selective revision. Stud Log 63(3):331–342

    Article  MathSciNet  MATH  Google Scholar 

  9. Garcia A, Simari GR (2004) Defeasible logic programming: an argumentative approach. Theory Pract Logic Program 4(1–2):95–138

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelfond M, Lifschitz V (1998) Action languages. Electron Trans AI 2:193–210

    Google Scholar 

  11. Grant J, Hunter A (2006) Measuring inconsistency in knowledgebases. J Intell Inf Syst 27:159–184

    Article  Google Scholar 

  12. Hansson SO (2001) A textbook of belief dynamics. Kluwer Academic Publishers, Norwell

    Google Scholar 

  13. Hunter A, Konieczny S (2006) Shapley inconsistency values. In: Proceedings of the 10th International Conference on Knowledge Representation (KR’06), AAAI Press, pp 249–259

  14. Kern-Isberner G (2001) Conditionals in nonmonotonic reasoning and belief revision. No. 2087 in lecture notes in computer science. Springer, Berlin

    MATH  Google Scholar 

  15. Kern-Isberner G, Thimm M (2010) Novel semantical approaches to relational probabilistic conditionals. In: Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR’10), AAAI Press, pp 382–392

  16. Kern-Isberner G, Thimm M (2012) A ranking semantics for first-order conditionals. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI’12)

  17. Krümpelmann P, Kern-Isberner G (2012) Belief base change operations for answer set programming. In: Proceedings of the 13th European conference on Logics in Artificial Intelligence (JELIA’12), Springer, pp 294–306

  18. Krümpelmann P, Thimm M, Falappa MA, Garcia AJ, Kern-Isberner G, Simari GR (2011) Selective revision by deductive argumentation. In: Theory and applications of formal argumentation, Proceedings of the First International Workshop (TAFA’11, revised selected papers). Lecture notes in artificial intelligence, vol 7132, Springer, pp 147–162

  19. Lifschitz V, Tang LR, Turner H (1999) Nested expressions in logic programs. Ann Math Artif Intell 25:369–389

    Article  MathSciNet  MATH  Google Scholar 

  20. McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 4:308–320

    Article  MATH  Google Scholar 

  21. Modgil S, Prakken H (2014) The ASPIC+ framework for structured argumentation: a tutorial. Argum Comput 5(1):31–62

    Article  Google Scholar 

  22. Pearl J (1990) System Z: a natural ordering of defaults with tractable applications to default reasoning. In: Proceedings of the 3rd conference on Theoretical aspects of reasoning about knowledge (TARK’90), Morgan Kaufmann Publishers, pp 121–135

  23. Potyka N (2014) Linear programs for measuring inconsistency in probabilistic logics. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR’14)

  24. Reiter R (1980) A logic for default reasoning. Artif Intell 13:81–132

    Article  MathSciNet  MATH  Google Scholar 

  25. Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136

    Article  Google Scholar 

  26. Rienstra T, Thimm M, Oren N (2013) Opponent models with uncertainty for strategic argumentation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13)

  27. Rödder W (2000) Conditional logic and the principle of entropy. Artif Intell 117:83–106

    Article  MathSciNet  MATH  Google Scholar 

  28. Schweimeier R, Schroeder M (2003) A parameterised hierarchy of argumentation semantics for extended logic programming and its application to the well-founded semantics. Theory Pract Logic Program 5(1–2):207–242

    MathSciNet  MATH  Google Scholar 

  29. Stolzenburg F, Garcia A, Chesnevar CI, Simari GR (2003) Computing generalized specificity. J Non-Class Log 13(1):87–113

    Article  MATH  Google Scholar 

  30. Thimm M (2012) A probabilistic semantics for abstract argumentation. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI’12)

  31. Thimm M (2013) Dynamic preference aggregation under preference changes. In: Proceedings of the Fourth Workshop on Dynamics of Knowledge and Belief (DKB’13)

  32. Thimm M (2013) Inconsistency measures for probabilistic logics. Artif Intell 197:1–24

    Article  MathSciNet  MATH  Google Scholar 

  33. Thimm M (2014) Coherence and compatibility of markov logic networks. In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI’14), pp 891–896

  34. Thimm M (2014) Tweety—a comprehensive collection of java libraries for logical aspects of artificial intelligence and knowledge representation. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR’14), pp 528–537

  35. Thimm M, Garcia AJ (2010) Classification and strategical issues of argumentation games on structured argumentation frameworks. In: van der Hoek W, Kaminka GA, Lespérance Y, Luck M, Sen S (eds) Proceedings of the Ninth International Joint Conference on Autonomous Agents and Multi-Agent Systems 2010 (AAMAS’10)

  36. Walsh T (2007) Representing and reasoning with preferences. AI Mag 28(4):59–70

    Google Scholar 

  37. Weiss G (ed) (2013) Multiagent systems: a modern approach to distributed artificial intelligence, 2nd edn. MIT Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

Tweety is being collaboratively developed by several contributors. Thanks go, among others, to Linda Briesemeister, Nils Geilen, Sebastian Homann, Tim Janus, Patrick Krümpelmann, Nico Potyka, Tjitze Rienstra, Stefan Tittel, Thomas Vengels, and Bastian Wolf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Thimm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thimm, M. The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation. Künstl Intell 31, 93–97 (2017). https://doi.org/10.1007/s13218-016-0458-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-016-0458-4

Keywords

Navigation