Skip to main content
Log in

Ecological and taxonomic characterisation of Trentepohlia umbrina (Kützing) Bornet growing on stone surfaces in Lazio (Italy)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Purpose

The colonisation of building material by photosynthetic organisms is highly dependent on the environmental conditions and the nature of the substrate. The growths of red-orange phototrophic biofilms have been widely reported in the literature and have commonly been associated with the order Trentepohliales, whose ecological and taxonomical information needs to be improved. Considering the recurrent presence of such biofilms throughout the Lazio region, we would identify the occurring species and define their favourable environmental conditions, through morphological, genetic and ecological analyses.

Results

Biofilms were collected across an altitude range of 0 to 860 m asl, occurring from the coast to 60-km inland. A dominant presence of the filamentous terrestrial green alga Trentepohlia umbrina (Kützing) Bornet was confirmed in all sites sometimes mixed with cyanobacteria of the genus Gloeocapsa. The distribution of Trentepohliales is generally given as pan-tropical, but some species, such as T. umbrina, are also distributed in temperate climates. Here, it is reported for the first time a Mediterranean occurrence of the species. Low humidity and light conditions, such as those occurring on vertical surfaces with mainly northern aspects, are the preferred environmental conditions. Coastal areas were more favourable for its growth, probably due to the higher nocturnal condensation that occurs here. Concrete and mortars were particularly bioreceptive to T. umbrina, but marble and trachyte were also colonised under favourable conditions.

Conclusions

The findings better define the ecological range of this species, suggesting a wider biogeographic distribution, and adding information on morphological features and genetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertano P (1995) Deterioration of Roman hypogea by epilithic cyanobacteria and microalgae. In: First International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Catania, Siracusa, Italy, pp 1303–1308

  • Alvarez A, Argemi M, Laorden V, Domenech X, Verbal J, Navarro A, Prada JL, Puges M, Rocabayera R, Vilaseca L (1994) Physical, chemical and biological weathering detected in the romanic portal of the Sant Quirze de Pedret church (XIIc.). In: Fassina V, Ott H, Zezza F (eds) Proceedings of the 3rd International Symposium on the Conservation of Monuments in the Mediterranean Basin. Soprintendenza ai Beni Artistici e Storici di Venezia, Venice, pp 365–369

    Google Scholar 

  • Anzalone B, Iberite M, Lattanzi E (2010) La flora vascolare del Lazio. Inf Bot Ita 42(1):187–317

    Google Scholar 

  • Ariño X, Saiz-Jimenez C (1996) Colonization and deterioration processes in Roman mortars by cyanobacteria, algae and lichens. Aerobiologia 12(1):9–18

    Article  Google Scholar 

  • Bagnouls F, Gaussen H (1963) Os climas Biológicos e sua classificac ̧ão. Bol Geogr 173:545–566

    Google Scholar 

  • Bartoli F, Municchia AC, Futagami Y, Kashiwadani H, Moon KH, Caneva G (2014) Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate. Int Biodeterior Biodegradation 96:157–165. https://doi.org/10.1016/j.ibiod.2014.09.015

    Article  CAS  Google Scholar 

  • Bellinzoni AM, Caneva G, Ricci S (2003) Ecological trends in travertine colonization by pioneer algae and plant communities. Int Biodeterior Biodegradation 51:203–210. https://doi.org/10.1016/S0964-8305(02)00172-5

    Article  Google Scholar 

  • Blasi C (1993) Carta del fitoclima del Lazio. Regionalizzazione e caratterizzazione climatica. Regione Lazio, Assessorato Agricoltura e Foreste, Caccia e Pesca, Usi civici. Università La Sapienza, Dip. to Biologia Vegetale, Roma

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springler Verlag, Wien

    Book  Google Scholar 

  • Bruno L, Valle V (2017) Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman catacombs. Int Biodeterior Biodegradation 123:286–295. https://doi.org/10.1016/j.ibiod.2017.07.013

    Article  Google Scholar 

  • Bruno L, Bellezza S, De Leo F, Urzi C (2014) A study for monitoring and conservation in the Roman catacombs of St. Callistus and Domitilla, Rome (Italy). In: Saiz-Jimenez C (ed) The conservation of subterranean cultural heritage. CRC Press, Taylor & Francis Group, pp. 37–44. ISBN 978–1–138-02694-0

  • Caneva G, Nugari MP, Ricci S, Salvadori O (1992) Pitting of marble roman monuments and the related micro-flora. In: Delgado J, Enriques F, Telmo F (eds) Seventh international congress on deterioration and conservation of stone LNNA, Lisbon, pp 521–530

  • Caneva G, Salvadori O, Ricci S, Ceschin S (2005) Biological analysis for the conservation of the hieroglyphic stairway of Copan (Honduras). LABS5. Biodegradation and biodeterioration in Latin America. Universidad de Campeche, Mexico, pp 55–58

  • Caneva G, Bartoli F, Ceschin S, Salvadori O, Futagami Y, Salvati L (2015) Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J Cult Herit 16(5):728–735. https://doi.org/10.1016/j.culher.2015.01.001

    Article  Google Scholar 

  • Caneva G, Bartoli F, Savo V, Futagami Y, Strona G (2016) Combining statistical tools and ecological assessments in the study of biodeterioration patterns of stone temples in Angkor (Cambodia). Sci Rep 6:32601. https://doi.org/10.1038/srep32601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler N, Viles H (2010) Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol J 27(6–7):630–646. https://doi.org/10.1080/01490451003702933

    Article  Google Scholar 

  • Danin A, Caneva G (1990) Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior Biodegradation 26:397–417. https://doi.org/10.1016/0265-3036(90)90004-q

    Article  Google Scholar 

  • Eggert A, Häubner N, Klausch S, Karsten U, Schumann R (2006) Quantification of algal biofilms colonising building materials: chlorophyll a measured by PAM-fluorometry as a biomass parameter. Biofouling 22(02):79–90. https://doi.org/10.1080/08927010600579090

    Article  CAS  PubMed  Google Scholar 

  • Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegradation 55(2):131–139

    Article  Google Scholar 

  • Gaylarde CC, Morton LG (1999) Deteriogenic biofilms on buildings and their control: a review. Biofouling 14(1):59–74. https://doi.org/10.1080/08927019909378397

    Article  Google Scholar 

  • Gaylarde CC, Gaylarde PM, Copp J, Neilan B (2004) Polyphasic detection of cyanobacteria in terrestrial biofilms. Biofouling 20(2):71–79. https://doi.org/10.1080/08927010410001681237

    Article  CAS  PubMed  Google Scholar 

  • Gaylarde P, Englert G, Ortega-Morales O, Gaylarde C (2006) Lichen-like colonies of pure Trentepohlia on limestone monuments. Int Biodeterior Biodegradation 58(3–4):119–123. https://doi.org/10.1016/j.ibiod.2006.05.005

    Article  CAS  Google Scholar 

  • Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 03 October 2018

  • Ho KK, Tan KH, Wee YC (1983) Growth conditions of Trentepohlia odorata (Chlorophyta, Ulotrichales). Phycologia 22(3):303–308. https://doi.org/10.2216/i0031-8884-22-3-303.1

    Article  CAS  Google Scholar 

  • John DM (2002) Order Trentepohliales. In: John DM, Whittin BA, Brook AJ (eds) The freshwater algal flora of the British Isles. Cambridge University Press, Cambridge, pp 475–478

    Google Scholar 

  • Lee KB, Wee YC (1982) Algae growing on walls around Singapore. Malayan Nat J

  • Lüttge U, Büdel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol 12(3):437–444. https://doi.org/10.1111/j.1438-8677.2009.00249.x

    Article  CAS  PubMed  Google Scholar 

  • Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiol 155(11):3476–3490. https://doi.org/10.1099/mic.0.032508-0

    Article  CAS  Google Scholar 

  • Marmor L, Degtjarenko P (2014) Trentepohlia umbrina on Scots pine as a bioindicator of alkaline dust pollution. Ecol Indic 45:717–720. https://doi.org/10.1016/j.ecolind.2014.06.008

    Article  CAS  Google Scholar 

  • Noguerol-Seoane A, Rifon-Lastra A (1996) Epilithic ficoflora on two monuments of historic-artistic interest from Galicia (N.W. Spain). In degradation and conservation of granitic rocks in monuments. Environmental Protection and Conservation of the European Cultural Heritage, pp. 417–421, Research Report no. 5. Brussels: European Commission Directorate-General XII: Science, Research and Development

  • Odum EP, Odum HT, Andrews J (1971) Fundamentals of ecology, vol 3. Saunders, Philadelphia

    Google Scholar 

  • Ortega-Morales BO, Gaylarde C, Anaya-Hernandez A, Chan-Bacab MJ, De la Rosa SC, García D (2012) Orientation effects of Trentepohlia-dominated biofilms on Mayan monuments of the Rio Bec style. Int Biodeterior Biodegradation 30:1–6. https://doi.org/10.1016/j.ibiod.2012.07.014

    Article  CAS  Google Scholar 

  • Pereira de Oliveira B (2008) Caracteriza ̧ca ̃o de filmes negros em pedras gran ́ıticas. O caso de estudo da Igreja da Ordem de Sa ̃o Francisco do Porto. MSc thesis, Universidade Nova de Lisboa, Lisbon, Portugal

  • Pinna D (2014) Biofilms and lichens on stone monuments: do they damage or protect? Front Microbiol 5(133):1–3. https://doi.org/10.3389/fmicb.2014.00133

    Article  Google Scholar 

  • Ramirez M, Hernandez-Marine M, Novelo E, Roldán M (2010) Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling 26(4):399–409. https://doi.org/10.1080/08927011003660404

    Article  CAS  PubMed  Google Scholar 

  • Ricci S, Bartoli F (2017) Alghe e cianobatteri. In: Caneva G, Tomei P (eds) M - I/U - RABILIA - Un giardino verticale sulle mura di Lucca. Gangemi Editore, Roma, pp 39–49

    Google Scholar 

  • Ricci S, Pietrini AM (1994) Caratterizzazione della microflora algale presente sulla Fontana dei Quattro Fiumi, Roma. In: La conservazione dei monumenti nel bacino del Mediterraneo: atti del 3° simposio internazionale, 22-25 giugno 1994 Venezia, pp 353–357

  • Rindi F, Guiry MD (2002) Diversity, life history, and ecology of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. J Phycol 38(1):39–54. https://doi.org/10.1046/j.1529-8817.2002.01193.x

    Article  Google Scholar 

  • Rindi F, Guiry MD (2004) Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43(3):225–235

    Article  Google Scholar 

  • Rindi F, López-Bautista JM (2007) New and interesting records of Trentepohlia (Trentepohliales, Chlorophyta) from French Guiana, including the description of two new species. Phycologia 46(6):698–708. https://doi.org/10.2216/06-88.1

    Article  Google Scholar 

  • Rindi F, Sherwood AR, Guiry MD (2005) Taxonomy and distribution of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in the Hawaiian islands. Phycol 44(3):270–284

    Article  Google Scholar 

  • Rindi F, Guiry MD, López-Bautista JM (2006) New records of Trentepohliales (Ulvophyceae, Chlorophyta) from Africa. Nova Hedwigia 83(3–4):431–449. https://doi.org/10.1127/0029-5035/2006/0083-0431

    Article  Google Scholar 

  • Rindi F, Lam DW, López-Bautista JM (2009) Phylogenetic relationships and species circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta). Mol Phylogenet Evol 52(2):329–339. https://doi.org/10.1016/j.ympev.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  • Rizzi Longo L, Poldini L, Goia F (1980) La microflora algale delle pareti calcaree del Friuli-Venezia Giulia (Italia nord-orientale). EUT Edizioni Università di Trieste

  • Samad LK, Adhikary SP (2008) Diversity of micro-algae and cyanobacteria on building facades and monuments in India. Algae 23(2):91–114. https://doi.org/10.4490/ALGAE.2008.23.2.091

    Article  Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments-an updated overview. Appl Microbiol 66:97–139. https://doi.org/10.1016/S0065-2164(08)00805-8

    Article  CAS  Google Scholar 

  • Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegradation 46(3):251–258. https://doi.org/10.1016/S0964-8305(00)00078-0

    Article  Google Scholar 

  • Tran TH, Govin A, Guyonnet R, Grosseau P, Lors C, Garcia-Diaz E, Damidot D, Devès O, Ruot B (2014) Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: comparison between laboratory and field scale experiments. Int Biodeterior Biodegradation 86:334–342. https://doi.org/10.1016/j.ibiod.2013.10.005

    Article  CAS  Google Scholar 

  • Traversetti L, Bartoli F, Caneva G (2018) Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int Biodeterior Biodegradation 134:31–38. https://doi.org/10.1016/j.ibiod.2018.07.016

    Article  Google Scholar 

  • Unković ND, Popović SS, Stupar MČ, Samolov ED, Subakov-Simić GV, Ljaljević-Grbić MV, Vukojević JB (2017) Biofilm forming microorganisms on various substrata from greenhouse of botanical garden “Jevremovac”. Matica Srpska J Nat Sci 132:57–67. https://doi.org/10.2298/ZMSPN1732057U

    Article  Google Scholar 

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • Wakefield RD, Jones MS, Wilson MJ, Young ME, Nicholson K, Urquhart DC (1996) Investigations of decayed sandstone colonised by a species of Trentepohlia. Aerobiologia 12(1):19–25

    Article  Google Scholar 

  • Wee YC, Lee KB (1980) Proliferation of algae on surfaces of buildings in Singapore. Int Biodeterior Bull 16(4):113–117

    Google Scholar 

  • Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Poliani P, Selbmann L (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeterior Biodegradation 70:40–46. https://doi.org/10.1016/j.ibiod.2011.11.018

    Article  CAS  Google Scholar 

Download references

Funding

Financial support to the research arises from the cooperation agreement among the Universities of Tor Vergata and Roma Tre (2016/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Bartoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

No humans or animals were used in this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, F., Ellwood, N.T.W., Bruno, L. et al. Ecological and taxonomic characterisation of Trentepohlia umbrina (Kützing) Bornet growing on stone surfaces in Lazio (Italy). Ann Microbiol 69, 1059–1070 (2019). https://doi.org/10.1007/s13213-019-01472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-01472-9

Keywords

Navigation