Skip to main content
Log in

Antiradical and antimicrobial properties of fermented red chicory (Cichorium intybus L.) by-products

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Discarded leaves of red chicory (Radicchio “Rosso di Chioggia” IGP) were fermented with one Saccharomyces yeast and four lactic acid bacteria chosen on the basis of their ability to grow on plant material without any need of supplements. Antiradical and antimicrobial activities of the resulting products were assessed. Among the strains tested, Lactobacillus plantarum and L. hilgardii gave the best performances and also provided fermented substrates with antiradical and antimicrobial activities. In particular the latter compounds were found only in fermented samples, confirming that the choice of appropriate microorganisms for fermentation could be useful when the aim is to target specific functional foods starting from by-products or waste material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberto MR, Farias ME, Manca de Nadra MC (2001) Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J Agric Food Chem 49:4359–4363

    Article  CAS  PubMed  Google Scholar 

  • Arvanitoyannis IS, Kassaveti A (2007) Current and potential uses of composted olive oil waste. Int J Food Sci Tech 42:281–295

    Article  CAS  Google Scholar 

  • Bovo B, Fontana F, Giacomini A, Corich V (2011) Effects of yeast inoculation on volatile compound production by grape marcs. Ann Microbiol 61:117–124

    Article  CAS  Google Scholar 

  • Drosinos EH, Paramithiotis S, Kolovos G, Tsikouras I, Metaxopoulos I (2007) Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in Southern Greece. Food Microbiol 24:260–267

    Article  PubMed  Google Scholar 

  • Escarpa A, Gonzales MC (2001) Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromathographic and spectrophotometric methods. Anal Chim Acta 427:119–127

    Article  CAS  Google Scholar 

  • Ferioli F, Manco MA, Antuono LF (2015) Variation of sesquiterpene lactones and phenolics in chicory and endive germplasm. J Food Comp Anal 39:77–86

    Article  CAS  Google Scholar 

  • Filannino P, Baia Y, Di Cagno R, Gobbetti M, Gänzle MG (2015) Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol 46:272–279

    Article  CAS  PubMed  Google Scholar 

  • Finotti E, Gezzi R, Nobili F, Garaguso I, Friedman M (2015) Effect of apple, baobab, red-chicory, and pear extracts on cellular energy expenditure and morphology of a Caco-2 cells using transepithelial electrical resistance (TEER) and scanning electron microscopy (SEM). RSC Adv 5:22490–22498

    Article  CAS  Google Scholar 

  • Gardner NJ, Savard T, Obermeier P, Caldwell G, Champagne CP (2001) Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol 64:261–275

    Article  CAS  PubMed  Google Scholar 

  • Giacomini A, Squartini A, Nuti MP (2000) Nucleotide Sequence and Analysis of Plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) Involved in Pediocin A Production. Plasmid 43:111–122

    Article  CAS  PubMed  Google Scholar 

  • Innocenti M, Gallori S, Giaccherini C, Ieri F, Vincieri FF, Mulinacci N (2005) Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. J Agric Food Chem 53:6497–6502

    Article  CAS  PubMed  Google Scholar 

  • Heimler D, Isolani L, Vignolini P, Romani A (2009) Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem 114:765–760

    Article  CAS  Google Scholar 

  • Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Effect of fermentation on the antioxidant activity in plant-based food. Food Chem 160:346–356

    Article  CAS  PubMed  Google Scholar 

  • Jiménez N, Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoza R (2014) Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. App Environ Microbiol 40:2991–2997

    Article  Google Scholar 

  • Koukounaras A, Siomos AS (2010) Changes in antioxidant activity of radicchio during storage. Acta Hortic 877:1281–1286

    Article  CAS  Google Scholar 

  • Lante A, Nardi T, Zocca F, Giacomini A, Corich V (2011) Evaluation of red chicory extract as a natural antioxidant by pure lipid oxidation and yeast oxidative stress response as model systems. J. Agric Food Chem 59:5318–5324

    Article  CAS  Google Scholar 

  • Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  • Maragkoudakis PA, Nardi T, Bovo B, D'Andrea M, Howell KS, Giacomini A, Corich V (2013) Biodiversity, dynamics and ecology of bacterial community during grape marc storage for the production of grappa. Int J Food Microbiol 162:143–151

    Article  CAS  PubMed  Google Scholar 

  • Martìnez-Muñoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319

    Article  PubMed  PubMed Central  Google Scholar 

  • Miliauskas G, Venskutonis P, van Beek T (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  • Miller BJ, Franz CM, Cho GS, Du Toit M (2011) Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions. Curr Microbiol 62:1682–1688

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arribas M, Polo MC, Jorganes F, Muñoz R (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84:117–123

    Article  CAS  PubMed  Google Scholar 

  • Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharmaceut Biomed 41:1523–1542

    Article  CAS  Google Scholar 

  • Ribéreau‐Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006) Handbook of Enology: The microbiology of wine and vinifications, vol. 1, 2nd edn. Wiley, New York

  • Rodas A, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Micr 55:197–207

    Article  CAS  Google Scholar 

  • Rodríguez H, de Las RB, Gómez-Cordovés C, Muñoz R (2008) Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int J Food Microbiol 121:92–98

    Article  PubMed  Google Scholar 

  • Rodríguez H, Curiel JA, Landete JM, de Las RB, de Felipe FL, Gómez-Cordovés C, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    Article  PubMed  Google Scholar 

  • Rossetto M, Lante A, Vanzani P, Spettoli P, Scarpa M, Rigo A (2005) Red chicories as potent scavengers of highly reactive radicals: A study on their phenolic composition and peroxyl radical trapping capacity and efficiency. J Agric Food Chem 53:8169–8175

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Barba JL, Cathcart DP, Warner PJ, Jiménez-Díaz R (1994) Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in Spanish-style green olive fermentations. Appl Environ Microbiol 60:2059–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Spyropoulos B, Misiakos E, Fotiadis C, Stoidis C (2011) Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation induced enteritis and colitis. Digest Dis Sci 56:285–294

    Article  PubMed  Google Scholar 

  • Street RA, Sidana J, Prinsloo G (2013) Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology. Evid Based Complement Alternat Med 2013:579319

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsangalis D, Ashton JF, McGill AEJ, Shah NP (2002) Enzymic transformation of isoflavone phytoestrogens in soymilk by b-glucosidase producing bifidobacteria. J Food Sci 67:3104–3113

    Article  CAS  Google Scholar 

  • Vuyst LD, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic & Professional, London

  • Zuleta A, Sambucetti ME (2001) Inulin determination for food labelling. J Agric Food Chem 49:4750–4572

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank F. Fontana and S. Zannoni for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Giacomini.

Ethics declarations

Financial statement

This study was funded in part by POR “Competitività regionale e occupazione” - parte FESR 2007/2013 Azione 1.1.1. Progetto “RISIB” SMUPR n. 4145 “Potenziamento della rete di infrastrutture a supporto dell’innovazione biotecnologica” and by MIUR (ex-60 % grant).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dafni Maria Kagkli and Viviana Corich are joint first authors.

Dafni Maria Kagkli and Viviana Corich contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagkli, D.M., Corich, V., Bovo, B. et al. Antiradical and antimicrobial properties of fermented red chicory (Cichorium intybus L.) by-products. Ann Microbiol 66, 1377–1386 (2016). https://doi.org/10.1007/s13213-016-1225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1225-3

Keywords

Navigation