Skip to main content

Advertisement

Log in

Inhibitory potential of biosurfactants from Bacillus amyloliquefaciens derived from mangrove soil against Vibrio parahaemolyticus

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is a halophilic bacterium that causes seafood-borne gastroenteritis which can occur through direct or cross-contamination. In this study, biosurfactant-producing marine bacteria were isolated from 28 soil samples collected from mangrove and coastal regions. Using the cross streak technique, 26 isolates were found to inhibit the growth of V. parahaemolyticus. Biosurfactant lipopeptides were obtained by acid precipitation and their antimicrobial potentials were assessed by the agar well diffusion technique. The extract of a bacterial isolate SM11 derived from mangrove soil showed the strongest inhibitory activity against V. parahaemolyticus. The inhibition zones against V. parahaemolyticus of the extract obtained by chloroform and methanol at concentrations of 900, 1800 and 2600 μg/mL were 16.9 ± 0.2, 18.4 ± 0.5 and 25.0 ± 0.1 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extract were 256 to 512 and 512 to 1024 μg/mL, respectively. The extract of biosurfactants showed more than 60 % reduction in V. parahaemolyticus adhesion. 16S rRNA gene sequencing of SM11 revealed that this isolate is Bacillus amyloliquefaciens. The active fractions obtained from anion exchange chromatography and HPLC as analysed by ESI-Q-TOF mass spectrometry indicated that those biosurfactants were mycosubtilin, surfactin and iturin A. Besides highlighting the merits of biosurfactants as antagonistic agents, this study suggests the possibility of using them to decrease cross-contamination of V. parahaemolyticus on cooking or food processing surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzym Microb Technol 27:749–754

    Article  CAS  Google Scholar 

  • Amano M, Hara S, Taga N (1982) Utilization of dissolved amino acids in seawater by marine bacteria. Mar Biol 68:31–36

    Article  CAS  Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dadisman TA Jr, Nelson R, Molenda JR, Garber HJ (1972) Vibrio parahaemolyticus gastroenteritis in Maryland. I. Clinical and epidemiologic aspects. Am J Epidemiol 96:414–426

    PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385

    Article  CAS  Google Scholar 

  • Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726:87–95

    Article  CAS  PubMed  Google Scholar 

  • Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378

    Article  CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jatapai A, Moungthong B, Thunyaharn S, Huttayananont S, Rangsin R (2010) An acute gastroenteritis outbreak of Vibrio parahaemolyticus O4:K55 in Nursing College, Thailand. Trop Biomed 27:265–274

    CAS  PubMed  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, pp 115–175

    Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Jung YJ, Yoo JS, Cho YS, Cha IH, Choi YL (2002) Characteristics of biosurfactants produced by Bacillus sp. LSC11. Korean J Life Sci 12:745–751

    Article  Google Scholar 

  • Lertcanawanichakul M, Sawangnop S (2011) A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J Sci Technol 5:161–171

  • Ma L, Su YC (2011) Validation of high pressure processing for inactivating Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas). Int J Food Microbiol 144:469–474

    Article  PubMed  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto C, Okuda J, Ishibashi M, Iwanaga M, Garg P, Rammamurthy T, Wong HC, Depaola A, Kim YB, Albert MJ, Nishibuchi M (2000) Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J Clin Microbiol 38:578–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee AK, Das K (2010) Microbial surfactants and their potential applications: an overview. In: Sen R (ed) Biosurfactants. Springer, New York, pp 54–64

    Chapter  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Okuda J, Ishibashi M, Abbott SL, Janda JM, Nishibuchi M (1997) Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. J Clin Microbiol 35:1965–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi AR, Pandian SK (2014) Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from Gulf of Mannar. Indian J Microbiol 54:376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak KV, Keharia H (2013) Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). J Appl Microbiol 114:1300–1310

    Article  CAS  PubMed  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Saimmai A, Tani A, Sobhon V, Maneerat S (2012) Mangrove sediment, a new source of potential biosurfactantproducing bacteria. Ann Microbiol 62:1669–1679

  • Shen X, Cai Y, Liu C, Liu W, Hui Y, Su YC (2009) Effect of temperature on uptake and survival of Vibrio parahaemolyticus in oysters (Crassostrea plicatula). Int J Food Microbiol 136:129–132

    Article  CAS  PubMed  Google Scholar 

  • Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558

    Article  PubMed  Google Scholar 

  • Su YC, Yang Q, Häse C (2010) Refrigerated seawater depuration for reducing Vibrio parahaemolyticus contamination in pacific oyster (Crassostrea gigas). J Food Prot 73:1111–1115

    Article  PubMed  Google Scholar 

  • Thatoi H, Behera BC, Mishra RR, Dutta SK (2013) Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63:1–19

    Article  CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization–time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G (1997a) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  PubMed  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997b) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vuddhakul V, Chowdhury A, Laohaprertthisan V, Pungrasamee P, Patararungrong N, Thianmontri P, Ishibashi M, Matsumoto C, Nishibuchi M (2000) Isolation of a pandemic O3:K6 clone of a Vibrio parahaemolyticus strain from environmental and clinical sources in Thailand. Appl Environ Microbiol 66:2685–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuddhakul V, Bhoopong P, Hayeebilan F, Subhadhirasakul S (2007) Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus. Food Microbiol 24:413–418

    Article  PubMed  Google Scholar 

  • Yano Y, Kaneniwa M, Satomi M, Oikawa H, Chen SS (2006) Occurrence and density of Vibrio parahaemolyticus in live edible crustaceans from markets in China. J Food Prot 69:2742–2746

    PubMed  Google Scholar 

  • Yeung PM, Boor KJ (2004) Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis 1:74–88

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funds from the Commission on Higher Education and National Science and Technology Development Agency, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varaporn Vuddhakul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongjun, J., Tansila, N., Panthong, K. et al. Inhibitory potential of biosurfactants from Bacillus amyloliquefaciens derived from mangrove soil against Vibrio parahaemolyticus . Ann Microbiol 66, 1257–1263 (2016). https://doi.org/10.1007/s13213-016-1216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1216-4

Keywords

Navigation