Skip to main content

Advertisement

Log in

Screening and characterization of a non-insecticidal Bacillus thuringiensis strain producing parasporal protein with selective toxicity against human colon cancer cell lines

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 08 March 2016

Abstract

Parasporins are a heterogenous group of Cry proteins produced by non-insecticidal Bacillus thuringiensis strains that specifically act on human cancer cells without affecting normal ones. This unique cytotoxic property has driven researchers to explore novel non-insecticidal B. thuringiensis strains possessing cancer cell-killing proteins. In this study, we isolated 65 non-clonal native isolates from 21 coastal soil samples and subsequently tested 28 strains which were non-haemolytic and non-insecticidal for their cytotoxicity against human colon cancer cell line HCT 116 and human cervical cancer cell line SiHa. Parasporal protein from a strain designated as B.t.LDC 501 showed significantly higher cytolytic activity on HCT 116 cells than on SiHa cells. The activated protein also exerted specific cell lethality against two other colon cancer cell lines, SW480 and SW620. However, it was notably non-toxic to normal cells, such as human peripheral blood leukocytes, human embryonic kidney cell line (HEK293) and human corneal epithelial cell line (HCEC) and showed only modest toxicity on a murine fibroblast cell line (NIH/3T3). The purified 20-kDa crystal protein obtained through gel filtration chromatography exhibited a markedly higher cytopathic effect than the unpurified protein. Liquid chromatography–tandem mass spectrometry analysis of the 20-kDa fragment revealed it to be an uncharacterized protein containing a tumor necrosis factor-like domain. The non-apoptotic mode of cell death, extensive membrane permeability and aminopeptidase N-dependent cytotoxicity suggests the pore-forming nature of the protein. Further characterization of the protein and the receptor will facilitate its use as a potential therapeutic drug against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad N, Feyes DK, Agarwal R, Mukhtar H, Nieminen AL (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89:1881–1886. doi:10.1093/jnci/89.24.1881

    Article  CAS  PubMed  Google Scholar 

  • Amano H, Yamagiwa M, Akao T, Mizuki E, Ohba M, Sakai H (2005) A novel 29-kDa crystal protein from Bacillus thuringiensis induces caspase activation and cell death of Jurkat T cells. Biosci Biotechnol Biochem 69:2063–2072. doi:10.1271/bbb.69.2063

    Article  CAS  PubMed  Google Scholar 

  • Ammouneh H, Harba M, Idris E, Makee H (2011) Isolation and characterization of native Bacillus thuringiensis isolates from Syrian soil and testing of their insecticidal activities against some insect pests. Turk J Agric For 35:421–431. doi:10.3906/tar-1007-1117

    Google Scholar 

  • Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90. doi:10.1016/S0065-2164(08)70223-5

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422. doi:10.1128/AEM.69.5.2415-2422.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crava CM, Bel Y, Jakubowska AK, Ferré J, Escriche B (2013) Midgut aminopeptidase N isoforms from Ostrinia nubilalis: Activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Insect Biochem Mol Biol 43:924–935. doi:10.1016/j.ibmb.2013.07.009

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf ESCHERICHIA, Van Rie J, Lereclus D, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813, 1092-2172/98/$04.0010

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199. doi:10.1016/S0168-9525(01)02237-5

    Article  PubMed  Google Scholar 

  • Dykman TR, Cole JL, Iida KYOKO, Atkinson JP (1983) Structural heterogeneity of the C3b/C4b receptor (Cr 1) on human peripheral blood cells. J Exp Med 157:2160–2165. doi:10.1084/jem.157.6.2160

  • Ekino K, Okumura S, Ishikawa T, Kitada S, Saitoh H, Akao T, Mizuki E (2014) Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis A1100 Strain. Toxins 6:1882–1895. doi:10.3390/toxins6061882

    Article  PubMed  PubMed Central  Google Scholar 

  • El-kersh TA, Al-sheikh YA, Al-akeel RA, Alsayed AA (2012) Isolation and characterization of native Bacillus thuringiensis isolates from Saudi Arabia. Afr J Biotechnol 11:1924–1938

    CAS  Google Scholar 

  • Gill SS, Cowles EA, Francis V (1995) Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem 270:27277–27282. doi:10.1074/jbc.270.45.27277

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez E, Granados JC, Short JD, Ammons DR, Rampersad J (2011) Parasporins from a Caribbean Island: evidence for a globally dispersed Bacillus thuringiensis strain. Curr Microbiol 62:1643–1648. doi:10.1007/s00284-011-9905-5

    Article  CAS  PubMed  Google Scholar 

  • Goodman NS, Gottfried RJ, Rogoff MH (1967) Biphasic system for separation of spores and crystals of Bacillus thuringiensis. J Bacteriol 94:485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greco TM, Miteva Y, Conlon FL, Cristea IM (2012) Complementary proteomic analysis of protein complexes. In: Hoopler S, Vize PD (eds) Xenopus Protocols, 2nd edn. Humana Press, New York, pp 391–407

    Chapter  Google Scholar 

  • Hastowo S, Lay BW, Ohba M (1992) Naturally occurring Bacillus thuringiensis in Indonesia. J Appl Microbiol 73:108–113. doi:10.1111/j.1365-2672.1992.tb01695.x

    Google Scholar 

  • Heiss P, Bernatz C, Burchelt G, Senekowitsch-Schimidtke R (1997) Cytotoxic effect of immunoconjugate composed of glucose-oxidase coupled to an anti-ganglioside (GD2) antibody on spheroids. Anticancer Res 17:3177–3178. doi:10.1016/j.biocontrol.2008.08.020

    CAS  PubMed  Google Scholar 

  • Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsokos M, Stamp GW, Stetler-Stevenson WG (2000) Validation of a model of colon cancer progression. J Pathol 192:446–454

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Ding X, Sun Y, Yang Q, Xiao X, Cao Z, Xia L (2012) Proteomic analysis of Bacillus thuringiensis at different growth phases by using an automated online two-dimensional liquid chromatography-tandem mass spectrometry strategy. Appl Environ Microbiol 78:5270–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Ohba M (1993) Diversity of Bacillus thuringiensis environmental isolates showing larvicidal activity specific for mosquitoes. J Gen Microbiol 139:2849–2854. doi:10.1099/00221287-139-11-2849

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Sasaguri Y, Kitada S, Kusaka Y, Kuwano K, Masutomi K, Ohba M (2004) A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. J Biol Chem 279:21282–21286. doi:10.1074/jbc.M401881200

    Article  CAS  PubMed  Google Scholar 

  • Jara S, Maduell P, Orduz S (2006) Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J Appl Microbiol 101:117–124. doi:10.1111/j.1365-2672.2006.02901.x

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Kusaka Y, Mizuki, E (2009) Parasporin-1 receptor and use thereof. U.S. Patent Application 12/935,513. U.S. Patent and Trademark Office, Alexandria, VA

  • Kitada S, Abe Y, Ito A, Osamu K, Akao T, Mizuki E, Ohba M (2005) Molecular identification and cytocidal action of parasporin, a protein group of novel crystal toxin targeting human cancer cells. In: Proc 6th Pacific Rim Conference on the Biotechnology of Bacillus thuringiensis and its Environmental Impact. National Sciences and Engineering Research Council of Canada, Ottawa, pp. 23–27.

  • Kitada S, Abe Y, Shimada H, Kusaka Y, Matsuo Y, Katayama H, Ito A (2006) Cytocidal actions of parasporin-2, an anti-tumor crystal toxin from Bacillus thuringiensis. J Biol Chem 281:26350–26360. doi:10.1074/jbc.M602589200

    Article  CAS  PubMed  Google Scholar 

  • Kitada S, Abe Y, Maeda T, Shimada H (2009) Parasporin-2 requires GPI-anchored proteins for the efficient cytocidal action to human hepatoma cells. Toxicology 264:80–88. doi:10.1016/j.tox.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  • Köcher T, Swart R, Mechtler K (2011) Ultra-high-pressure RPLC hyphenated to an LTQ-Orbitrap Velos reveals a linear relation between peak capacity and number of identified peptides. Anal Chem 83:2699–2704. doi:10.1021/ac103243t

  • Knight J, Crickmore N, Ellar J (1994) The receptor for Bacillus thuringiensis CrylA (c) delta‐endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436. doi:10.1111/j.1365-2958.1994.tb00324.x

    Article  CAS  PubMed  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv Insect Physiol 24:275–308. doi:10.1016/S0065-2806(08)60085-5

    Article  CAS  Google Scholar 

  • Laemmli K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1007/s00018-003-3072-1

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ding X, Xia L, Sun Y, Yuan C, Yin J (2012) Proteomic analysis of Bacillus thuringiensis strain 4.0718 at different growth phases. Sci World J. doi:10.1100/2012/798739

    Google Scholar 

  • Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park S (1999) Unique activity associated with non‐insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell‐killing action on human cancer cells. J Appl Microbiol 86:477–486. doi:10.1046/j.1365-2672.1999.00692.x

    Article  CAS  PubMed  Google Scholar 

  • Mizuki E, Park S, Saitoh H, Yamashita S, Akao T, Higuchi K, Ohba M (2000) Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin Diagn Lab Immunol 7:625–634. doi:10.1128/CDLI.7.4.625-634.2000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohd-Salleh MB (1980) Effect of crystals, spores, and exotoxins of six varieties of Bacillus thuringiensis on selected corn insects. PhD thesis. Iowa State University of Science and Technology, Ames

  • Nagamatsu Y, Okamura S, Saitou H, Akao T, Mizuki E (2010) Three cry toxins in two types from Bacillus thuringiensis strain M019 preferentially kill human hepatocyte cancer and uterus cervix cancer cells. Biosci Biotechnol Biochem 74:494–498. doi:10.1271/bbb.90615

    Article  CAS  PubMed  Google Scholar 

  • Ohba M, Aizawa K (1986) Distribution of Bacillus thuringiensis in soils of Japan. J Invertebr Pathol 47:277–282. doi:10.1016/0022-2011(86)90097-2

    Article  Google Scholar 

  • Okumura S, Saitoh H, Wasano N, Katayama H, Higuchi K, Mizuki E, Inouye K (2006) Efficient solubilization, activation, and purification of recombinant Cry45Aa of Bacillus thuringiensis expressed as inclusion bodies in Escherichia coli. Protein Expr Purif 47:144–151. doi:10.1016/j.pep.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, Ohba M, Mizuki E, Crickmore N, Côté JC, Nagamatsu Y, Kitada S, Sakai H, Harata K, Shin T (2010) Parasporin nomenclature. Available at http://parasporin.fitc.pref.fukuoka.jp/

  • Poornima K, Selvanayagam P, Shenbagarathai R (2010) Identification of native Bacillus thuringiensis strain from South India having specific cytocidal activity against cancer cells. J Appl Microbiol 109:348–354. doi:10.1111/j.1365-2672.2010.04697.x

    CAS  PubMed  Google Scholar 

  • Rajagopal R, Agrawal N, Selvapandiyan A, Sivakumar S, Ahmad S, Bhatnagar RK (2003) Recombinantly expressed isozymic aminopeptidases from Helicoverpa armigera midgut display differential interaction with closely related Cry proteins. Biochem J 370:971–978. doi:10.1042/BJ20021741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rang J, He H, Wang T, Ding X, Zuo M, Quan M, Xia L (2015) Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718. PLoS One 10(3):e0119065. doi:10.1371/journal.pone.0119065

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas WE, Ellar DJ (1983) Bacillus thuringiensis var. israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci 60:181–197

    CAS  PubMed  Google Scholar 

  • Uemori A, Maeda M, Yasutake K, Ohgushi A, Kagoshima K, Mizuki E, Ohba M (2007) Ubiquity of parasporin-1 producers in Bacillus thuringiensis natural populations of Japan. Naturwissenschaften 94:34–38. doi:10.1007/s00114-006-0153-7

    Article  CAS  PubMed  Google Scholar 

  • Wang SW, McCarthy WJ (1997) Cytolytic activity of Bacillus thuringiensis CryIC and CryIAc toxins to Spodoptera sp. midgut epithelial cells in vitro. In Vitro Cell Dev Biol Anim 33:315–323. doi:10.1007/s11626-997-0053-y

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Katayama H, Saitoh H, Akao T, Park YS, Mizuki E, Ito A (2005) Typical three-domain Cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J Biochem 138:663–672. doi:10.1093/jb/mvi177

    Article  CAS  PubMed  Google Scholar 

  • Yasutake K, Binh ND, Kagoshima K, Uemori A, Ohgushi A, Maeda M, Mizuki E, Yu M, Ohba M (2006) Occurrence of parasporin-producing Bacillus thuringiensis in Vietnam. Can J Microbiol 52:365–372. doi:10.1139/w05-134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Center for Research in Medical Entomology–Indian Council of Medical Research, Madurai and Research Extension Centre, Central Silk Board, Srivilliputhur for providing the mosquito and silkworm larvae. We extend our thanks to the National Centre for Cell Science, Pune, Aravind Medical Research Foundation, Madurai, Madurai Kamaraj University, Madurai for providing cell lines and to Clinbiocare Pvt Ltd, Chennai for the LC-MS/MS analysis. We thank the Department of Science and Technology (SR/SO/HS-48/2008), Council of Scientific and Industrial Research (37(1480)/11/EMR-II), Science and Engineering Research Board (SR/SO/HS-0116/2012) and Department of Biotechnology–Bioinformatics Infrastructure Facilities (reference 102/IFD/SAN/1125/2006-07) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenbagarathai Rajaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periyasamy, A., Kkani, P., Chandrasekaran, B. et al. Screening and characterization of a non-insecticidal Bacillus thuringiensis strain producing parasporal protein with selective toxicity against human colon cancer cell lines. Ann Microbiol 66, 1167–1178 (2016). https://doi.org/10.1007/s13213-016-1204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1204-8

Keywords

Navigation