Skip to main content

Advertisement

Log in

Production of ganoderic acid by Ganoderma lucidum RCKB-2010 and its therapeutic potential

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The newly isolated basidiomycetous fungus, identified as Ganoderma lucidum RCKB-2010 was tested for production of ganoderic acid (GA) under submerged fermentation conditions. Production of GA under liquid static cultivation condition was found to be 2,755.88 mg L−1 on the 25th day of incubation, whereas under shaking cultivation conditions the maximum production of GA was observed to be 373.75 mg L−1. 1H NMR analysis revealed clearly that the fungal extracts possessed a lanostane skeleton, confirming the presence of GA. Interestingly, GA was found to have potential to inhibit the proliferation of HeLa cells and U87 human glioma cells in a dose dependent manner. In addition, GA was also found to possess antibacterial activity, exhibiting a minimal inhibitory concentration of 0.25 mg mL−1 against standard strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. GA produced in the present study holds potential as a potent anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berovic M, Habijanic J, Zore I, Wraber B, Hodzar D, Boh B, Pohleven F (2003) Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. J Biotechnol 103:77–86

    Article  CAS  PubMed  Google Scholar 

  • Cheung WM, Hui WS, Chu PW, Chiu SW, Ip NY (2000) Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Lett 486:291–296

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Kuhad RC (2002) Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri. Bioresour Technol 84:35–38

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El-Mekkaway SR, Meselhy M, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-protease substances from Ganoderma lucidum. Phytochemistry 49:1651–1657

    Article  Google Scholar 

  • Fang QH, Zhong JJ (2002a) Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem Eng J 10:1–65

    Article  Google Scholar 

  • Fang QH, Zhong JJ (2002b) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem 37:769–774

    Article  CAS  Google Scholar 

  • Fang QH, Tang YJ, Zhong JJ (2002) Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 37:1375–1379

    Article  CAS  Google Scholar 

  • Hirotani M, Ino C, Furuya T, Shiro M (1986) Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of Ganoderma lucidum. Chem Pharm Bull 34:2282–2285

    Article  CAS  Google Scholar 

  • Jia Z, Zhang X, Cao X (2009) Effects of carbon sources on fungal morphology and lovastatin biosynthesis by submerged cultivation of Aspergillus terreus. Asia-Pac J Chem Eng 4:672–677

    Article  CAS  Google Scholar 

  • Kidwai M, Khan MKR, Saxena S (2005) Synthesis of 4-aryl-7,7-dimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2-one/thione-5-one derivatives and evaluation as antibacterials. Euro J Med Chem 40:816–819

    Article  CAS  Google Scholar 

  • Kuhad RC, Johri BN (1989) Bird’s Nest Fungus Cyathus, a record from Bhopal. Advanc Biosci 8:67–69

    Google Scholar 

  • Kuhad RC, Kapoor RK, Lal R (2004) Improving the yield and quality of DNA isolated from white-rot fungi. Folia Microbiol 49:112–116

    Article  CAS  Google Scholar 

  • Liu YW, Gao JL, Guan J, Qian ZM, Feng K, Li SP (2009) Evaluation of antiproliferative activities and action mechanisms of extracts from two species of Ganoderma on tumor cell lines. J Agric Food Chem 57:3087–3093

    Article  CAS  PubMed  Google Scholar 

  • Liu GQ, Wang XL, Han WJ, Lin QL (2012) Improving the fermentation production of the individual key triterpeneganoderic acid me by the medicinal fungus Ganoderma lucidum in submerged culture. Molecules 17:12575–12586

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shiao MS (1992) Triterpenoid natural products in the fungus Ganoderma lucidum. J Chin Chem Soc 39:669–674

    CAS  Google Scholar 

  • Shiao MS, Lee KR, Lee JL, Cheng TW (1994) Natural products and biological activities of the Chinese medicinal fungus Ganoderma lucidum. Food Phytochemicals for Cancer Prevention II; ACS Symposium Series; American Chemical Society, Washington, DC, vol 547, pp 342–354.

  • Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831

    Article  CAS  PubMed  Google Scholar 

  • Smania EF, Monache FD, Yunes RA, Paulert R, Samania A Jr (2007) Antimicrobial activity of methyl australate from Ganoderma australe. Braz J Pharmacol 17:178–181

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsujikura Y, Higuchi T, Miyamoto Y, Sato S (1992) Manufacture of ganoderic acid by fermentation of Ganoderma lucidum (in Japanese). Jpn Kokai Tokkyo Koho JP 04304890

  • Tzivion G, Gupta VS, Kaplun L, Balan V (2006) 14-3-3 proteins as potential oncogenes. Semin Cancer Biol 16:203–213

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, Mitchell DA, Sassaki GL, Amazonas AL, Berovic M (2003) Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technol Biotechnol 41:371–382

    CAS  Google Scholar 

  • Weng CJ, Chau CF, Yen GC, Liao JW, Chen DH, Chen KD (2009) Inhibitory effects of ganoderma lucidum on tumorigenesis and metastasis of human hepatoma cells in cells and animal models. J Agric Food Chem 57:5049–5057

    Article  CAS  PubMed  Google Scholar 

  • Xu YN, Zhong JJ (2012) Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol Adv 30(6):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Ding ZY, Qian Z, Zhao CX, Zhang KC (2008) Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media. Enzyme Microb Technol 42:325–331

    Article  CAS  Google Scholar 

  • Xu JW, Xu YN, Zhong JJ (2010) Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum. Appl Microbiol Biotechnol 85:941–948

    Article  CAS  PubMed  Google Scholar 

  • Xu YN, Xia XX, Zhong JJ (2013) Induced effect of Na(+) on ganoderic acid biosynthesis in static liquid culture of Ganoderma lucidum via calcineurin signal transduction. Biotechnol Bioeng 110:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Yoon SY, Eo SK, Kim YS, Lee CK, Han SS (1994) Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res 17:438–442

    Article  CAS  PubMed  Google Scholar 

  • You BJ, Lee HZ, Chung KR, Lee MH, Huang MJ, Tien N, Chan CW, Kuo YH (2012) Enhanced production of ganoderic acids and cytotoxicity of Ganoderma lucidum using solid-medium culture. Biosci Biotechnol Biochem 76:1529–1534

    Article  CAS  PubMed  Google Scholar 

  • Yue QX, Cao ZW, Guan SH, Liu XH, Tao L, Wu WY, Li YX, Yang PY, Liu X, Guo DA (2008) Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer automated estimation of the possible drug target network. Mol Cell Proteom 7:949–961

    Article  CAS  Google Scholar 

  • Zhang WX, Zhong JJ (2010) Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum. Biosci Bioeng 109:37–40

    Article  CAS  Google Scholar 

  • Zhao W, Xu JW, Zhong JJ (2011) Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions. Bioresour Technol 102:8185–8190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support from University of Delhi South Campus, New Delhi, India for accomplishment of this piece of work is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Additional information

Mohita Upadhyay and Bhuvnesh Shrivastava contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, M., Shrivastava, B., Jain, A. et al. Production of ganoderic acid by Ganoderma lucidum RCKB-2010 and its therapeutic potential. Ann Microbiol 64, 839–846 (2014). https://doi.org/10.1007/s13213-013-0723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0723-9

Keywords

Navigation