Skip to main content
Log in

Effects and applications of sub-lethal ultrasound, electroporation and UV radiations in bioprocessing

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Advances in bioprocess technology involving microbial cells have led to increased and improved production of beneficial new products and bioactive compounds. However, the semipermeable barrier of the cell membrane often retards the efficient productivity or reaction rate of the cells. Physical treatments such as ultrasound, electroporation and UV radiation provide an efficient approach to increase membrane permeability, leading to enhanced productivity of microbial cells. It is important to note that extensive membrane permeabilization by these physical treatments could be detrimental to cell viability leading to lower yield. An appropriate selection of sublethal dosage and intensity of these physical treatments are critical to preserve the viability of cells and at the same time maintain their bioprocess applications. Despite the promising applications of these physical treatments, safety issues related to possible genotoxicity or mutation of cells upon treatments have been raised. This genotoxic effect of physical treatments could be prevented if appropriate measures are taken, without compromising their bioprocess potentials. The current review highlights the effect of sublethal physical treatments such as ultrasound, electroporation and UV radiation on the viability of cells, their potential bioprocess applications, and the possibility of mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong JD, Kunz BA (1992) Photoreactivation implicates cyclobutane dimers as the major promutagenic UVB lesions in yeast. Mutat Res 268:83–94

    Article  PubMed  CAS  Google Scholar 

  • Bajaj BK, Sharma S (2010) Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance. Braz J Microb 41:477–485

    Article  CAS  Google Scholar 

  • Beggs CB (2002) A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem Photobiol Sci 1:431–437

    Article  PubMed  CAS  Google Scholar 

  • Berney M, Weilenmann H-U, Egli T (2007) Adaptation to UVA radiation of E. coli growing in continuous culture. J Photochem Photobiol B: Biol 86:149–159

    Article  CAS  Google Scholar 

  • Bintsis T, Litopoulou-Tzanetaki E, Robinson R (2000) Existing and potential applications of ultraviolet light in the food industry. A critical review. J Sci Food Agric 80:637–645

    Article  CAS  Google Scholar 

  • Butz P, Tauscher B (2002) Emerging technologies: chemical aspects. Food Res Int 35:279–284

    Article  CAS  Google Scholar 

  • Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial cells by electroporation. J Bacteriol 170:2796–2801

    PubMed  CAS  Google Scholar 

  • Chen RR (2007) Permeability issues in whole-cell bioprocess and cellular membrane engineering. Appl Microb Biotech 74:730–738

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzym Microb Tech 8:194–204

    Article  CAS  Google Scholar 

  • Chuanyun D, Bochu W, Chuanren D, Sakanishi A (2003) Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium Ashbyii. Coll Surf B: Biointerfaces 30:37–41

    Article  Google Scholar 

  • Delimaris J, Tsilimigakil S, Messini-Nicolaki N, Ziros E, Piperakis SM (2006) Effects of pulsed electric fields on DNA of human lymphocytes. Cell Biol Toxicol 22:409–415

    Article  PubMed  CAS  Google Scholar 

  • Doughty CJ, Hope AB (1973) Effects of ultraviolet radiation on the membranes of Chara coralline. J Membr Biol 13:185–198

    Article  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington

    Google Scholar 

  • Gabriel B, Teissie J (1999) Time courses of mammalian cell electropermeabilization observed by milisecond imaging of membrane property changes during the pulse. Biophys J 76:2158–2165

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Gómez N, Mañas P, Raso J, Pagán R (2007) Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated. Int J Food Microb 113:219–227

    Article  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapa H (2003) Microbial a-amylases: a biotechnological perspective. Proc Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Gusbeth C, Frey W, Volkmann H, Schwartz T, Bluhm H (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233

    Article  PubMed  CAS  Google Scholar 

  • Hayer K (2010) The effect of ultrasound exposure on the transformation efficiency of Escherichia coli HB101. Biosci Horiz 3:141–147

    Article  CAS  Google Scholar 

  • Herran NS, Lopez JLC, Perez JAS, Chisti Y (2008) Effects of ultrasound on culture of Aspergillus terreus. J Chem Tech Biotech 83:593–600

    Article  CAS  Google Scholar 

  • Hirst C (1991) A study of the effect of kHz ultrasound on the mutation rate of Salmonella typhimurium TA102. Br Dent J 170:115–117

    Article  PubMed  CAS  Google Scholar 

  • Hoerter JD, Arnold AA, Kuczynska DA, Shibuya A, Ward CS, Sauer MG, Gizachew A, Hotchkiss TM, Fleming TJ, Johnson S (2005) Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J Photochem Photobiol B: Biol 81:171–180

    Article  CAS  Google Scholar 

  • Horikawa-Miura M, Matsuda N, Yoshida M, Okumura Y, Mori T, Watanabe M (2007) The greater lethality of UVB radiation to cultured human cells is associated with the specific activation of a DNA damage-independent signaling pathway. Radiat Res 167:655–662

    Article  PubMed  CAS  Google Scholar 

  • Hung SC, Liao JC (1996) Effects of ultraviolet light irradiation in biotreatment of organophosphates. Appl Biochem Biotech 56:37–47

    Article  CAS  Google Scholar 

  • Jagger J (1981) Near-UV radiation effects on microorganisms. Photochem Photobiol 34:761–768

    PubMed  CAS  Google Scholar 

  • Kang JS, Kim HN, Jung DJ, Kim JE, Mun GH, Kim YS, Cho D, Shin DH, Hwang Y, Lee WJ (2007) Regulation of UVB-induced IL-8 and MCP-1 production in skin keratinocytes by increasing vitamin C uptake via the redistribution of SVCT-1 from the cytosol to the membrane. J Invest Derma 127:698–706

    Article  CAS  Google Scholar 

  • Kondo T, Arai S, Kuwabara M, Yoshii G, Kano E (1985) Damage in DNA irradiated with 12 MHz ultrasound and its effect on template activity of DNA for RNA synthesis. Radiat Res 104:284–292

    Article  PubMed  CAS  Google Scholar 

  • Kramer GF, Ames BN (1987) Oxidative mechanisms of toxicity of low-intensity near-uv light in Salmonella typhimurium. J Bacteriol 169:2259–2266

    PubMed  CAS  Google Scholar 

  • Lanchun S, Bochu W, Liancai Z, Jie L, Yanhong Y, Chuanren D (2003) The influence of low-intensity ultrasonic on some physiological characteristics of Saccharomyces cerevisiae. Coll Surf B: Biointerfaces 30:61–66

    Article  Google Scholar 

  • Li X, Jin H, Wu Z, Rayner S, Wang B (2008) A continuous process to extract plasmid DNA based on alkaline lysis. Nat Protoc 3:176–180

    Article  PubMed  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14:S207–S225

    PubMed  CAS  Google Scholar 

  • Loghavi L, Sastry SK, Yousef AE (2007) Effect of moderate electric field on the metabolite activity and growth kinetics of Lactobacillus acidophilus. Biotech Bioeng 98:872–881

    Article  CAS  Google Scholar 

  • Lucas-Lledo JI, Lynch M (2009) Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol 26:1143–1153

    Article  PubMed  CAS  Google Scholar 

  • Lye HS, Alias KA, Rusul G, Liong MT (2012) Ultrasound treatment enhances cholesterol removal ability of lactobacilli. Ultrason Sonochem 19:632–641

    Article  PubMed  CAS  Google Scholar 

  • Mehier-Humbert S, Bettinger T, Yan F, Guy RH (2004) Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 104:213–222

    Article  Google Scholar 

  • Miiller-Niklas G, Heissenberger A, PuSkarik S, Herndllr GJ (1995) Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquat Microb Ecol 9:111–116

    Article  Google Scholar 

  • Monsen T, Lovgren E, Widerstro M, Wallinder L (2009) In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections. J Clin Microb 47:2496–2501

    Article  Google Scholar 

  • Nguyen TMP, Lee YK, Zhou W (2011) Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chem 134:1038–1043

    Google Scholar 

  • Noci F, Walkling-Ribeiro M, Cronin DA, Morgan DJ, Lyng JG (2009) Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. Int Dairy J 19:30–35

    Article  Google Scholar 

  • Ohshima T, Sato M, Saito M (1995) Selective release of intracellular protein using pulsed electric field. J Electrost 35:103–112

    Article  CAS  Google Scholar 

  • Petrea L (2008) Characterization of two Saccharomyces cerevisiae strains obtained by uv mutagenesis. Innovat Rom Food Biotechnol 2:40–47

    CAS  Google Scholar 

  • Pitt WG, Ross SA (2003) Ultrasound increases the rate of bacterial cell growth. Biotechnol Prog 19:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microb 87:207–216

    Article  CAS  Google Scholar 

  • Prasanna GL, Panda T (1997) Electroporation: basic principles, practical considerations and applications in molecular biology. Bioproc Eng 16:261–264

    Article  CAS  Google Scholar 

  • Ritenour ER, Braaton M, Harrison GH, Ueno A, Gadd M, Manco-Johnson M, Parker R, Shih S, Waldren CA (1991) Absence of mutagenic effects of continuous and pulsed ultrasound in cultured (AL) human-hamster hybrid cells. Ultrasound Med Biol 17:921–930

    Article  PubMed  CAS  Google Scholar 

  • Rochette PJ, Bastien N, Todo T, Drouin R (2006) Pyrimidine (6–4) pyrimidone photoproduct mapping after sublethal UVC doses: nucleotide resolution using terminal transferase-dependent PCR. Photochem Photobiol 82:1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Sakanashi T, Sugiyana M, Suematsu T, Nakagawa T, Hidaka T, Ogura R (1988) UV exposure alters the membrane lipid composition and cell membrane fluidity of intact cultured E46 melanoma cells. Kurume Med J 35:159–169

    Article  PubMed  CAS  Google Scholar 

  • Scherba G, Weigel RM, O’brien WD (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. Appl Environ Microbiol 57:2079–2084

    PubMed  CAS  Google Scholar 

  • Setchell KDR, Brown NB, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isofloavones. J Nutr 132:3577–3584

    PubMed  CAS  Google Scholar 

  • Shiina S, Ohshima T, Sato M (2004) Extracellular release of recombinant alpha-amylase Escherichia coli using pulsed electric field. Biotech Prog 20:1528–1533

    Article  CAS  Google Scholar 

  • Shimizu K, Sekiguchi M (1979) Introduction of an active enzyme into permeable cells of Escherichia coli: acquisition of ultraviolet light resistance by uvr mutants on introduction of T4 endonuclease V. Mol Gen Genet 168:37–47

    Article  PubMed  CAS  Google Scholar 

  • Simpson RK, Whittington R, Earnshaw RG, Russell NJ (1999) Pulsed high electric field causes ‘all or nothing’ membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H + -ATPase is not a primary target. Int J Food Microb 48:1–10

    Article  CAS  Google Scholar 

  • Smith HL, Howland MC, Szmodis AW, Li Q, Daemen LL, Parikh AN, Majewski J (2009) Early stages of oxidative stress-induced membrane permeabilization: a neutron reflectometry study. J Am Chem Soc 131:3631–3638

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultrashort high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res 542:65–75

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kumatani T, Usui S, Tsujimura R, Seki T, Morimoto K, Ohnishi T (2005) Photoreactivation in Paramecium tetraurelia under conditions of various degrees of ozone layer depletion. Photochem Photobiol 81:1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Liu Q, Wang X, Mi N, Wang P, Zhang J (2008) Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro. Ultrasonics 48:66–73

    Article  PubMed  CAS  Google Scholar 

  • Tryfona T, Bustard MT (2008) Impact of pulsed electric fields on Corynebacterium glutamicum cell membrane permeabilization. J Biosci Bioeng 105:375–382

    Article  PubMed  CAS  Google Scholar 

  • Villarino A, Rager MN, Grimont PAD, Bouvet OMM (2003) Are UV-induced nonculturable Escherichia coli K-12 cells alive or dead? Eur J Biochem 270:2689–2695

    Article  PubMed  CAS  Google Scholar 

  • Wade MH, Trosko JE (1983) Enhanced survival and decreased mutation frequency after photoreactivation of UV damage in rat kangaroo cells. Mutat Res 112:231–243

    Article  PubMed  CAS  Google Scholar 

  • Wang DZ, Sakakibara M, Kondoh N, Suzuki K (1995) Ultrasound-enhanced lactose hydrolysis in milk fermentation with Lactobacillus bulgaricus. J Chem Tech Biotechnol 65:86–92

    Article  Google Scholar 

  • Witkin EM (1969) Ultraviolet-induced mutation and DNA repair. Annu Rev Genet 3:525–552

    Article  CAS  Google Scholar 

  • Wouters PC, Bos AP, Ueckert J (2001) Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl Environ Microbiol 67:3092–3101

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Hulbert GJ, Mount JR (2000) Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innov Food Sci Emerg Technol 1:211–218

    Article  CAS  Google Scholar 

  • Yang S, Zhang H, Wang W (2010) The ultrasonic effect on the mechanism of cholesterol oxidase production by Brevibacterium sp. Afr J Biotechnol 9:2574–2578

    CAS  Google Scholar 

  • You YH, Lee DH, Yoon JH, Nakajima S, Yasui A, Pfeifer GP (2001) Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J Bio Chem 276:44688–44694

    Article  CAS  Google Scholar 

  • Zarif BR, Azin M, Amirmozafari N (2011) Increasing the bioethanol yield in the presence of furfural via mutation of a native strain of Saccharomyces cerevisiae. Afr J Microbiol Res 56:651–656

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Universiti Sains Malaysia-Research University (USM-RU) grant (1001/PTEKIND/815056), IPS-Research Fund Grant (1002/CIPS/ATTR3100) and USM fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Tze Liong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, SK., Liong, MT. Effects and applications of sub-lethal ultrasound, electroporation and UV radiations in bioprocessing. Ann Microbiol 63, 813–824 (2013). https://doi.org/10.1007/s13213-012-0559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0559-8

Keywords

Navigation