Skip to main content

Advertisement

Log in

Monitoring of biofilm production by Pseudomonas aeruginosa strains under different conditions of UVC irradiation and phage infection

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infection in immunocompromised individuals. This bacterium forms complex communities known as biofilms. Biofilms are also beneficial for bioremediation processes in terms of eliminating oil spills and sewage treatment; however, they can be harmful, particularly in the food industry sector and in water distribution systems. This paper focuses on the development of a concept that limits biofilm formation by P. aeruginosa strains. The results suggest that combined treatment with lytic phage and UVC radiation may provide an alternative control strategy. Indeed, the enhancement of physical disinfection step efficiency by the use of a biological agent instead of chemical one such as chlorine can be considered as a safety procedure to reduce and/or to prevent biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beckmann C, Brittnacher M, Ernst R, Mayer-Hamblett N, Miller SI, Burns JL (2005) Use of phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic fibrosis airway infections. Infect Immun 73:444–452

    Article  PubMed  CAS  Google Scholar 

  • Ben Said M, Hassen A, Saidia N, Ackermann HW (2009) Study of the relationship between bacteriophage and selective host cells according to different conditions of UV-C irradiation. Desalination 248:76–87

    Google Scholar 

  • Ben Said M, Masahiro O, Hassen A (2010) Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Ann Microbiol 60:121–127

    Article  PubMed  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635

    Article  PubMed  CAS  Google Scholar 

  • Bressler D, Balzer M, Dannehl A, Flemming HC, Wingender J (2009) Persistence of Pseudomonas aeruginosa in drinking water biofilms on elastomeric material. Water Sci Technol 9(1):81–87

    CAS  Google Scholar 

  • Collins TL, Markus EA, Hassett DJ, Robinson JB (2010) The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr Microbiol 61:411–416

    Article  PubMed  CAS  Google Scholar 

  • Demczuk W, Ahmed R, Ackerman H-W (2004) Morphology of Salmonella enterica serovar Heidelberg typing phages. Can J Microbiol 50:873–875

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Cornelis P, Williams P, Cámara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  • Espinosa AC, Arias CF, Sánchez-Colón S, Mazari-Hiriart M (2009) Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system. Environ Health 8:1–10

    Article  Google Scholar 

  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2009) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Appl Environ Microbiol 54:397–404

    Google Scholar 

  • Gallard H, Von Gunten U (2002) Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Res 36(1):65–74

    Article  PubMed  CAS  Google Scholar 

  • Girard G, Bloemberg GV (2008) Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 3:97–106

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez JM, Manfredi C, Alonso JC, Blázquez J (2007) A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol 28:5–14

    Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104

    Article  PubMed  CAS  Google Scholar 

  • Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753

    Article  PubMed  CAS  Google Scholar 

  • Harunur RM, Kornberg (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:4885–4890

    Article  Google Scholar 

  • Haas C, Joffe J, Anmangandla U, Heath M (1996) Water qualityand disinfection kinetics. J Am Water Works Assoc 1996:95–103

  • Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Matsumoto-Nakano M, Fujita K, Nagayama K, Funao J, Ooshima T (2009) Effects of recombinase a deficiency on biofilm formation by Streptococcus mutans. Oral Microbial Immunol 24:104–108

    Article  CAS  Google Scholar 

  • Kim JJ, Sundin GW (2001) Construction and analysis of photolyase mutants of Pseudomonas aeruginosa and Pseudomonas syringae. Contribution of photoreactivation, nucleotide excision repair, and mutagenic DNA repair to cell survival and mutability following exposure to UV-B radiation. Appl Environ Microbiol 67:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258

    Article  PubMed  CAS  Google Scholar 

  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    PubMed  CAS  Google Scholar 

  • Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biology Rev 74:621–641

    Article  CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Marques CNH, Salisbury VC, Greenman J, Bowker KE, Nelson SM (2005) Discrepancy between viable counts and light output as viability measurements, following ciprofloxacin challenge of self-bioluminescent Pseudomonas aeruginosa biofilms. J Antimicrobial Chemotherapy 56(4):665–671

    Article  CAS  Google Scholar 

  • Miller RV, Kokjohn TA (1988) Expression of the recA gene of Pseudomonas aeruginosa PAO is inducible by DNA-damaging agents. J Bacteriol 170:2385–2387

    PubMed  CAS  Google Scholar 

  • Miller R, Jeffrey W, Mitchell D, Elasri M (1999) Bacterial responses to ultraviolet light. Appl Environ Microbiol 65:535–541

    Google Scholar 

  • Momba MNB, Binda MA (2002) Combining chlorination and chloramination processes for the inhibition of bioflm formation in drinking surface water system models. J Appl Microbiol 92:641–648

    Article  PubMed  CAS  Google Scholar 

  • Momba MNB, Cloete TE, Venter SN, Kfr R (1998) Evaluation of the impact of disinfection processes on the formation of bioflms in potable surface water distribution systems. Water Sci Technol 38:283–289

    Article  CAS  Google Scholar 

  • Norton CD, LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66:268–276

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  PubMed  CAS  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Antiadhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnology 83:541–553

    Article  CAS  Google Scholar 

  • Schlacher K, Cox MM, Woodgate R, Goodman MF (2006) RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442:883–887

    Article  PubMed  CAS  Google Scholar 

  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277

    Article  PubMed  CAS  Google Scholar 

  • Simoes M, Simoes LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. Food Sci Technol 43:573–583

    CAS  Google Scholar 

  • Somers EB, Wong AC (2004) Efficacy of two cleaning and sanitizing combinations on Listeria monocytogenes biofilms formed at low temperature on a variety of materials in the presence of ready-to-eat-meat residue. J Food Protect 67:2218–2229

    Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warner P, Olsen MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an apportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, AttilaC WM, Wood TK (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the cooperation of H.W. Ackermann for help with the electron microscopy of phage lysates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Ben Said.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Said, M.B., Daly, I., Nasr, H. et al. Monitoring of biofilm production by Pseudomonas aeruginosa strains under different conditions of UVC irradiation and phage infection. Ann Microbiol 63, 433–442 (2013). https://doi.org/10.1007/s13213-012-0487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0487-7

Keywords

Navigation