Skip to main content

Advertisement

Log in

Diversity of nifH gene in rhizosphere and non-rhizosphere soil of tobacco in Panzhihua, China

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

To gain a better understanding of the effects of tobacco root secretions on the nifH gene community of rhizosphere soil, the diversity of the nifH gene in the rhizosphere and non-rhizosphere soil of tobacco was investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing. Shannon diversity (H), richness (S) and evenness (E H) indices were used to analyze the DGGE results. The results showed that the nifH gene diversity for rhizosphere soil was lower than that of the non-rhizosphere at three sampling sites. The increase in H of non-rhizosphere soil was due mainly to the increase in pH and the decrease in available N. Richness was correlated closely with H. There was a great difference of evenness between the rhizosphere and the non-rhizosphere samples. A range of sequence divergence was observed in the eight sequenced nifH clones. The sequences were divided into three clusters in the phylogenetic tree. The majority of the clones were similar to the nifH genes of Betaproteobacteria, Zoogloea oryzae, Dechloromonas sp. and Azovibrio restrictus. There was a difference regarding dominant species between the rhizosphere and the non-rhizosphere samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvey S, Yang CH, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol Fertil Soils 37(2):73–82

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  CAS  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62(6):1935–1943

    PubMed  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots–the hidden half. Dekker, New York, pp 641–649

    Google Scholar 

  • Bürgmann H, Widmer F, Sigler WV, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in Soil. Appl Environ Mcrobiol 70(1):240–247

    Article  Google Scholar 

  • Chou J, Jiang S, Cho J, Song J, Lin M, Chen W (2008) Azonexus hydrophilus sp. nov., a nifH gene-harbouring bacterium isolated from freshwater. Int J Syst Evol Microbiol 58:946–951

    Article  PubMed  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin

    Book  Google Scholar 

  • Das SN, Dutta S, Kondreddy A, Chilukoti N, Pullabhotla SVSRN, Vadlamudi S, Podile AR (2010) Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. J Plant Growth Regul 29(4):409–418

    Article  CAS  Google Scholar 

  • Diallo MD, Willens A, Vloemans N, Cousin S, Vandekerckhove TT, de Lajudie P, Neyra M, Vyverman W, Gillis M, Van der Gucht K (2004a) Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ Microbiol 6:400–415

    Article  CAS  Google Scholar 

  • Diallo MD, Martens M, Vloeman N, Cousin S, Vandekerckhove TT, Neyra M, de Lajudie P, Willens A, Vyverman W, Van der Gucht K (2004b) Phylogenetic analysis of the partial bacterial 16S rRNA sequences of tropical grass pasture soil under Acacia tortilis subsp. Raddiana in Senegal. Syst Appl Micobiol 27(2):238–252

    Article  CAS  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, Van Elsas JD, Van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  PubMed  CAS  Google Scholar 

  • Eichner CA, Erb RW, Timmis KN, Wangner-Döbler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65:102–109

    PubMed  CAS  Google Scholar 

  • Grayston SJ, Wand S, Campbell CD, Edwards AC (1996) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründung und Brache. Arb Deutsch Landwirt Ges 98:59–78

    Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Lai LJ (2009) Care of my Guezala (in Chinese). The Earth (Chinese) 4:51–53

    Google Scholar 

  • Langlois RJ, LaRoche J, Raab PA (2005) Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl Environ Microbiol 71:7910–7919

    Article  PubMed  CAS  Google Scholar 

  • Liljeroth E, Burgers SLGE, Van Veen JA (1991) Changes in bacterial populations along roots of wheat seedlings. Biol Fertil Soils 10:276–280

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plat specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Mergel A, Schmitz O, Mallmann T, Bothe H (2001) Relative abundance of denitrifiying and dinitrogen-fixing bacteria in layers of a forest soil. FEMS Microbiol Ecol 36:33–42

    Article  PubMed  CAS  Google Scholar 

  • Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580

    PubMed  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbière F, Monrozier LJ (2001a) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Mcrobiol 67(5):2255–2262

    Article  CAS  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001b) Improvement in RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  PubMed  CAS  Google Scholar 

  • Riesner D, Steger G, Zimmat R, Owens RA, Wagenhofer M, Hillen W, Vollbach S, Henco K (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377–389

    Article  PubMed  CAS  Google Scholar 

  • Robson R, Woodley P, Jones R (1986) Second gene (nifH*) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. EMBO J 5(6):1159–1163

    PubMed  CAS  Google Scholar 

  • Roesch LFW, Olivares FL, Pereira Passaglia LM, Selbach PA, de Sä ELS, de Camargo FAO (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microbiol Biotechnol 22:967–974

    Article  Google Scholar 

  • Saikaly PE, Stroot PG, Oerther DB (2005) Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Appl Environ Microbiol 71(10):5814–5822

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sun ZL, Ye HS, Luo LS (2005) Cocoon production survey of Yanbian (in Chinese). Sichuan Price 4:12–13

    Google Scholar 

  • Tan ZY, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Embley TM, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68:20–30

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351

    Article  PubMed  CAS  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 43–86

    Google Scholar 

  • Zhou JH, Li YP, Yang HQ (2005) Activated effect of root secretions in the different genotype tobacco to difficult dissolving phosphorus and potassium (in Chinese). J Hunan Agric Univ 3:276–280

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to an anonymous reviewer for kindly correcting this manuscript. This work was kindly funded by the Chinese Natural Science Foundation (no. 31070004) and the specialized research fund of the Doctoral Program of Higher Education 20060626006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Penttinen, P., Gu, Y. et al. Diversity of nifH gene in rhizosphere and non-rhizosphere soil of tobacco in Panzhihua, China. Ann Microbiol 62, 995–1001 (2012). https://doi.org/10.1007/s13213-011-0339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0339-x

Keywords

Navigation