Skip to main content
Log in

Studying the host-microbiota interaction in the human gastrointestinal tract: basic concepts and in vitro approaches

  • Review
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacteria in the human gut exceed the number of cells in our body by a 100-fold. At the level of the gastrointestinal epithelium, a constant battle is fought for equilibrium between the microbiota and the human body. These interactions play a key role in many aspects of host health, influencing energy harvest from food, colonization by pathogens, and the immune system, to name but a few. Unfortunately, the study of this host–microbiota interaction in vivo is limited by the inaccessibility of the digestive tract. Therefore, in vitro technology that focuses on the simulation of this epithelial environment offers an ideal platform with which to conduct mechanistic research that could shed more light on this environment and help explain in vivo observations. However, the limitation of currently available tools could yield results with limited reliability for an in vivo situation. The aim of this mini-review is to focus on the importance of studying the host–microbiota interaction in the gastrointestinal tract and to evaluate the state of the art of the available in vitro techniques. Finally, we aim to identify those missing factors that, if present, would allow the creation of a model that would constitute a better simulation of biofilm formation, i.e. one more closely resembling the in vivo situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blaser MJ, Kirschner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449:843–849

    Article  PubMed  CAS  Google Scholar 

  • Cheesman SE, Guillemin K (2007) We know you are in there: conversing with the indigenous gut microbiota. Res Microbiol 158:2–9

    Article  PubMed  Google Scholar 

  • Cinquin C, Le Blay G, Fliss I, Lacroix C (2004) Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 48:128–138

    Article  PubMed  CAS  Google Scholar 

  • Cinquin C, Le Blay G, Fliss I, Lacroix C (2006) New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol Ecol 57:324–336

    Article  PubMed  CAS  Google Scholar 

  • Corthésy B, Gaskins HR, Mercenier A (2007) Cross-talk between probiotic bacteria and the host immune system. J Nutr 137:781S–790S

    PubMed  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88:S39–S49

    Article  PubMed  CAS  Google Scholar 

  • Gibson SA, Macfarlane C, Hay S, Macfarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683

    PubMed  CAS  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  PubMed  CAS  Google Scholar 

  • Höner zu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson JW, Richter EG, Goodwin TJ, Alexander JS, Pierson DL, Pellis N, Buchanan KL, Nickerson CA (2006) Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect 8:1813–1825

    Article  PubMed  Google Scholar 

  • Hooper LV (2009) Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol 7:367–374

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  PubMed  CAS  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112

    Article  PubMed  CAS  Google Scholar 

  • Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y (2009) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105:19474–19479

    Article  Google Scholar 

  • Laube B, Winkler S, Ladstetter B, Scheller T, Schwarz LR (2000) Establishment of a novel in vitro system for studying the interaction of xenobiotic metabolism of liver and intestinal microflora. Arch Toxicol 74:379–387

    Article  PubMed  CAS  Google Scholar 

  • Lebeer S, Verhoeven TL, Perea Vélez M, Vanderleyden J, De Keersmaecker SC (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768–6775

    Article  PubMed  CAS  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Yue LY, Guan XF, Qiao SY (2008) The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 104:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane S (2008) Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 42(Suppl 3):S142–S143

    Article  PubMed  Google Scholar 

  • Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane GT, Macfarlane S (2007) Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 18:156–162

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane GT, MacFarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane S, Woodmansey EJ, Macfarlane GT (2005) Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol 71:7483–7492

    Article  PubMed  CAS  Google Scholar 

  • Manning TS, Gibson GR (2004) Microbial-gut interactions in health and disease: prebiotics. Best Pract Res Clin Gastroenterol 18:287–298

    Article  PubMed  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  PubMed  CAS  Google Scholar 

  • Marzorati M, Possemiers S, Verstraete W (2009) The use of the SHIME-related technology platform to assess the efficacy of pre- and probiotics. Agro Food Ind Hi-Tech 20:S50–S55

    Google Scholar 

  • Marzorati M, Verhelst A, Luta G et al. (2010) Modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. 139:168–176

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  PubMed  CAS  Google Scholar 

  • Minekus M, Smeets-Peeters MJE, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P, Alric M, Fonty G, Huis in ‘t Veld JHJ (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108–114

    Article  PubMed  CAS  Google Scholar 

  • Molly K, Vande Woestyne M et al (1994) Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 7:191–200

    Article  Google Scholar 

  • Monds RD, O'Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  PubMed  CAS  Google Scholar 

  • Nollevaux G, Devillé C, El Moualij B, Zorzi W, Deloyer P, Schneider YJ, Peulen O, Dandrifosse G (2006) Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21). BMC Cell Biol 7:20

    Article  PubMed  Google Scholar 

  • O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  Google Scholar 

  • O'Hara AM, Shanahan F (2007) Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol 5:274–284

    Article  PubMed  Google Scholar 

  • Oliveira MJ, Van Damme J, Lauwaet T et al (2003) Beta-casein-derived peptides, produced by bacteria, stimulate cancer cell invasion and motility. EMBO J 22:6161–6173

    Article  PubMed  CAS  Google Scholar 

  • Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C (2004) Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol 60:477–485

    Article  PubMed  CAS  Google Scholar 

  • Pedersen K, Tannock GW (1989) Colonization of the porcine gastrointestinal tract by lactobacilli. Appl Environ Microbiol 55:279–283

    PubMed  CAS  Google Scholar 

  • Pham H, Boon N, Marzorati M, Verstraete W (2009) Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res 43:2936–2946

    Article  PubMed  CAS  Google Scholar 

  • Possemiers S, Grootaert C, Vermeiren J, Gross G, Marzorati M, Verstraete W, Van de Wiele T (2009) The intestinal environment in health and disease—recent insights on the potential of intestinal bacteria to influence human health. Curr Pharm Des 15:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Possemiers S, Marzorati M, Verstraete W, Van de Wiele T (2010) Bacteria and chocolate: a successful combination for probiotic delivery. J Food Microbiol 141:97–103

    Article  CAS  Google Scholar 

  • Probert HM, Gibson GR (2002) Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol 3:23–27

    PubMed  CAS  Google Scholar 

  • Probert HM, Gibson GR (2004) Development of a fermentation system to model sessile bacterial populations in the human colon. Biofilms 1:13–19

    Article  Google Scholar 

  • Rajilić-Stojanović M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136

    Article  PubMed  Google Scholar 

  • Sanchez JI, Marzorati M, Grootaert C, Baran M et al (2009) Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. Microb Biotechnol 2:101–113

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  PubMed  CAS  Google Scholar 

  • Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S et al (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246

    Article  PubMed  Google Scholar 

  • Vélez PM, De Keersmaecker SC, Vanderleyden J (2007) Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276:140–148

    Article  PubMed  Google Scholar 

  • Verstraete W (2007) Microbial ecology and environmental biotechnology. ISME J 1:4–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.M. benefits from an IWT post doctoral grant (OZM 090249). P.V.A. benefits from a FWO-Vlaanderen PhD scholarship, while T.V.W. and S.P. from a postdoctoral grant from FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Marzorati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzorati, M., Van den Abbeele, P., Possemiers, S. et al. Studying the host-microbiota interaction in the human gastrointestinal tract: basic concepts and in vitro approaches. Ann Microbiol 61, 709–715 (2011). https://doi.org/10.1007/s13213-011-0242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0242-5

Keywords

Navigation